Inorganic Materials

, Volume 38, Issue 11, pp 1123–1126

Thermodynamic Evaluation of the Dynamic Elastic Limit of Metals

  • S. S. Batsanov


Given that the plastic state of substances is similar to the liquid state, the work of plastic deformation is assumed to be proportional to the heat of melting. An equation is derived which relates the dynamic elastic limit to the volume change upon “mechanical melting.” The proportionality coefficient in this equation is determined by the degree of fragmentation of crystalline grains (shock-compression rate). The use of microscopic atomic rigidity characteristics makes it possible to derive a universal formula for calculating the elastic limit with a reasonable accuracy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry: Findings and Relationships), Moscow: Mosk. Gos. Univ., 2000, p. 292.Google Scholar
  2. 2.
    Batsanov, S.S. and Bokarev, V.P., On the Fragmentation Limit of Crystalline Inorganic Substances, Izv. Akad.Nauk SSSR, Neorg. Mater., 1980, vol. 16, no. 9, pp. 1650–1652.Google Scholar
  3. 3.
    Batsanov, S.S. and Zolotova, E.S., Shock-Compression Synthesis of Chromium Chalcogenides, Dokl. Akad.Nauk SSSR, 1968, vol. 180, no. 1, pp. 93–94.Google Scholar
  4. 4.
    Mashimo, T., Effects of Shock Compression on Ceramic Materials, High-Pressure Shock Compression of Solids, Davidson, L. and Shahinpoor, M., Eds., New York: Springer, 1998, pp. 101–146.Google Scholar
  5. 5.
    Batsanov, S.S., Effects of Explosions on Materials, New York: Springer, 1994, p. 194.Google Scholar
  6. 6.
    Villars, P. and Daams, J., Atomic-Environment Classification of the Chemical Elements, J. Alloys Compd., 1993, vol. 197, no. 2, pp. 177–196.Google Scholar
  7. 7.
    McQuin, R., Marsh, S., Taylor, J., et al., Equation of State of Solids from Shock Compression Studies, in High Velocity Impact Phenomena, New York: Academic, 1971. Translated under the title Vysokoskorostnye udarnye yavleniya, Moscow: Mir, 1973, pp. 299–427.Google Scholar
  8. 8.
    Duffy, T.S. and Ahrens, T.J., Dynamic Response of Molybdenum Shock Compressed at 1400°C, J. Appl. Phys., 1994, vol. 76, no. 2, pp. 835–842.Google Scholar
  9. 9.
    Orsky, A.R. and Whitehead, M.A., Electronegativity in Density Functional Theory: Diatomic Bond Energies and Hardness Parameters, Can. J. Chem., 1987, vol. 65, no. 8, pp. 1970–1979.Google Scholar
  10. 10.
    Batsanov, S.S., Electronegativities of Metal Atoms in Crystalline Solids, Neorg. Mater., 2001, vol. 37, no. 1, pp. 30–37 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 1, pp. 23–30].Google Scholar
  11. 11.
    Handbook of Chemistry and Physics, Lide, D.R., Ed., New York: CRC, 1995–1996, 76th ed.Google Scholar
  12. 12.
    Baublitz, M. and Ruoff, A.L., X-ray Diffraction from High Pressure Ge Using Synchrotron Radiation, J. Appl.Phys., 1982, vol. 53, no. 8, pp. 5669–5671.Google Scholar
  13. 13.
    Quadri, S.B., Skelton, E.F., and Webb, A.W., High Pressure Studies of Ge Using Synchrotron Radiation, J. Appl.Phys., 1983, vol. 54, no. 6, pp. 3609–3611.Google Scholar
  14. 14.
    Hu, J.Z. and Spain, I.L., Phase of Silicon at High Pressure, Solid State Commun., 1984, vol. 51, no. 5, pp. 263-266.Google Scholar
  15. 15.
    Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Crystal Data for High-Pressure Phases of Silicon, Phys.Rev. B: Condens. Matter, 1986, vol. 34, no. 7, pp. 4679-4682.Google Scholar
  16. 16.
    Tonkov, E.Yu., Fazovye prevrashcheniya soedinenii pri vysokikh davleniyakh (High-Pressure Phase Transformations of Compounds), Moscow: Metallurgiya, 1988, p. 358.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • S. S. Batsanov
    • 1
  1. 1.Center for High Dynamic Pressures, Mendeleevo, Solnechnogorskii raionMoscow oblastRussia

Personalised recommendations