Advertisement

Journal of Chemical Ecology

, Volume 25, Issue 3, pp 537–548 | Cite as

Differential Sensitivity of Mosquito Taxa to Vegetable Tannins

  • Delphine Rey
  • Andre Cuany
  • Marie-Paule Pautou
  • Jean-Claude Meyran
Article

Abstract

The sensitivity of larval Culicidae to vegetable tannins was investigated in different taxa representative of the fauna from alpine hydrosystems (Aedes rusticus, Culex pipiens) and foreign noxious fauna (Aedes aegypti, A. albopictus). Bioassays reveal that tannic acid at concentrations of 0.1–6 mM is significantly more toxic for C. pipiens than for Aedes taxa, and A. aegypti is more sensitive than A. albopictus and A. rusticus. Comparison of the rank order of sensitivity among taxa with the associated levels of cytochrome P-450, esterase, and glutathione-S-transferase activities suggests that cytochrome P-450 and esterases may be involved in the detoxification of tannins. A possible involvement of these detoxifying enzymes is also revealed in vivo by the synergistic effects of S,S,S-tributyl phosphorotrithioate (esterase inhibitor) and piperonyl butoxide (P-450 inhibitor). The differential sensitivity to tannins among taxa is discussed in terms of ecological implications within mosquito communities from alpine hydrosystems, where the acquisition of tannins–detoxifying enzymatic systems may be considered as a key innovation.

Tannic acid larvicidal activity Aedes rusticus Aedes albopictus Aedes aegypti Culex pipiens bioassays enzyme assays cytochrome P-450 glutathione-S-transferases esterases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265-267.Google Scholar
  2. Ahmad, S., Brattsten, L. B., Mullin, C. A. and Yu, S. J. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73-151, in L. B. Brattsten and S. Ahmad (eds.), Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  3. Appel, H. M. 1993. Phenolic compounds in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19:1521-1552.Google Scholar
  4. Ayres, M. P., Clausen, T. P., Maclean, S. F., Redman, A. M., and Reichardt, P. B. 1977. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696-1712.Google Scholar
  5. Barbehenn, R. V., and Martin, M. M. 1994. Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation. J. Chem. Ecol. 20:1985-2001.Google Scholar
  6. Beninger, C. W., and Abou-Zaid, M. M. 1997. Flavonol glycosides from four pine species that inhibit early instar gypsy moth (Lepidoptera: Lymantriidae) development. Biochem. System. Ecol. 25:505-512.Google Scholar
  7. Berenbaum, M. R. 1983. Effects of tannins on growth and digestion in two species of papilionids. Entomol. Exp. Appl. 34:245-250.Google Scholar
  8. Berenbaum, M. R. 1991. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17:213-221.Google Scholar
  9. Berenbaum, M. R., Favret, C., and Schuler, M. 1996. On defining “key innovations” in an adaptative radiation: Cytochrome P 450 and Papilionidae. Am. Nat. 148:S139-S155.Google Scholar
  10. Bernays, E. A., Chamberlain, D. J., and Leather, E. M. 1981. Tolerance of acridids to ingested condensed tannin. J. Chem. Ecol. 7:247-256.Google Scholar
  11. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72:248-254.CrossRefPubMedGoogle Scholar
  12. Brattsten, L. B. 1992. Metabolic defense against plant allelochemicals, pp. 145-242, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  13. Clark, A. G. 1990. Glutathione S-transferases and resistance to insecticides, pp. 131-159, in J. D. Hayes, C. B. Pickett, and T. J. Mantle (eds.). Glutathione S-transferases and Drug Resistance. Taylor and Francis, London.Google Scholar
  14. Cohen, M. B., Berenbaum, M. R., and Schuler, M. A. 1990. Immunochemical analysis of cytochrome P-450 monooxygenase diversity in the black swallowtail caterpillar, Papilio polyxenes. Insect Biochem. 20:770-783.Google Scholar
  15. Cuany, A., Pralavorio, M., Pauron, D., Berge, J. B., Fournier, D., Blais, C., Lafont, R., SalaÜn, J. P., Weissbart, D., Larroque, C., and Lange, R. 1990. Characterization of microsomal oxidative activities in a wild-type and DDT resistant strain of Drosophila melanogaster. Pestic. Biochem. Physiol. 37:293-302.Google Scholar
  16. Danielson, P. B., Frank, M. R., and Fogleman, J. C. 1994. Comparison of larval and adult P-450 activity levels for alkaloid metabolism in desert Drosophila. J. Chem. Ecol. 20:1893-1906.Google Scholar
  17. De Veau, E. J. I., and Schultz, J. C. 1992. Reassessment of interaction between gut detergents and tannins in Lepidoptera and significance for gypsy moth larvae. J. Chem. Ecol. 18:1437-1453.Google Scholar
  18. Dhillon, M. S., Mulla, M. S., and Hwang, Y. S. 1982. Allelochemical produced by the hydrophyte Myriophyllum spicatum affecting mosquitoes and midges. J. Chem. Ecol. 8:517-526.Google Scholar
  19. Frank, M. R., and Fogleman, J. C. 1992. Involvement of cytochrome P450 in host-plant utilization by sonoran desert Drosophila. Proc. Natl. Acad. Sci. U.S.A. 89:11998-12002.PubMedGoogle Scholar
  20. Gabinaud, A. 1987. Ecological mapping to support mosquito control on the French mediterranean coast. Parasitol. Today 3:317-320.PubMedGoogle Scholar
  21. Grant, W. D. 1976. Microbial degradation of condensed tannins. Science 193:1137-1139.PubMedGoogle Scholar
  22. Guengerich, F. P., Martin, M. V., Beaune, P. H., Kremers, P., Wolff, T., and Waxman, D. J. 1986. Characterization of rat and human liver microsomal cytochrome P 450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 261:5051-5060.PubMedGoogle Scholar
  23. Habig, W. H., Pabst, M. J., and Jacoby, W. B. 1974. Glutathion-S-transferases: The first step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139.PubMedGoogle Scholar
  24. Harborne, J. B. 1982. Phytochemical Methods. Chapman and Hall, London.Google Scholar
  25. Harshman, L. G., Ottea, J. A., and Hammock, B. D. 1991. Evolved environment-dependent expression of detoxification enzyme activity in Drosophila melanogaster. Evolution 45:791-795.Google Scholar
  26. Harold, J. A., and Ottea, J. A. 1997. Toxicological significance of enzyme activities in profenofosresistant tobacco budworms, Heliothis virescens (F.). Pestic. Biochem. Physiol. 58:23-33.Google Scholar
  27. Karoly, E. D., Rose, R. L., Thompson, D. M., Hodgson, E., Rock, G. C., and Roe, R. M. 1996. Monooxygenase, esterase, and glutathione transferase activity associated with azinphomethyl resistance in the tufted apple bud moth, Platynota idaeusalis. Pestic. Biochem. Physiol. 55:109-121.PubMedGoogle Scholar
  28. Larroque, C., Lange, R., Bomfils, C., and van Lier, J. E. 1988. Stéréospécificité de I'hydroxylation des stéroïdes par les cytochrome P 450: Nécessité biologique ou conséquence de leur multiplicité, pp. 269, in J. B. Beck and A. Craste de Paulet (eds.). Activités Biologiques des Oxystérols. Colloque INSERM.Google Scholar
  29. Lee, K. 1991. Glutathione-S-transferases in phytophagous insects: induction and inhibition by plant secondary compounds. Insect Biochem. 21:353-361.Google Scholar
  30. Leszczynski, B., Matok, M., and Dixon, A. F. G. 1994. Detoxification of cereal plant allelochemicals by aphids: activity and molecular weights of glutathione-S-transferase in three species of cereal aphids. J. Chem. Ecol. 20:387-394.Google Scholar
  31. Lineweaver, H., and Burk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658-666.Google Scholar
  32. Mercer, D. R., and Anderson, J. R. 1994. Tannins in treehole habitats and their effects on Aedes sierrensis (Diptera: Culicidae) production and parasitism by Lambornella clarcki (Ciliophora: Tetrahymenidae). Ann. Entomol. Soc. Am. 31:159-167.Google Scholar
  33. Motayama, N., Nishizawa, Y., Nagakura, A., Takemasa, T., and Dautermam, J. 1991. Selective inhibition of the cytochrome P450-dependent monooxygenases from the rat liver and housefly abdomen. Pestic. Future 1:173-184.Google Scholar
  34. Mourya, D. T., Hemingway, J., and Leake, C. J. 1993. Changes in enzyme titres with age in four geographical strains of Aedes aegypti and their association with insecticide resistance. Med. Vet. Entomol. 4:11-16.Google Scholar
  35. Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W. 1993. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 12:1-51.PubMedGoogle Scholar
  36. Paradise, C. J., and Dunson, W. A. 1997. Insect species interactions and resource effects in treeholes: are helodid beetles bottom-up facilitators of midge populations? Oecologia 109:303-312.CrossRefGoogle Scholar
  37. Pautou, G. 1981. Les milieux aquatiques de lisière dans la vallée du Rhône en amont de Lyon. Détection des populations animales liées aux milieux inondés périodiquement: L'exemple des Culicidés. Rapport pour le Ministère de l'Environnement-Comité Faune-Flore II:1-16.Google Scholar
  38. Pautou, G., AÏn, G., Gilot, B., Cousserans, J., Gabinaud, A., and Simonneau, P. 1973. Cartographie écologique appliquée à la démoustication. Doc. Cartog. Ecol., Univ. Sci. Med. Grenoble, France 11:1-16.Google Scholar
  39. Provost, M. W. 1975. Needle rush as an indicator of breeding of salt-marsh mosquitoes. Ann. Proc. Fla. Anti-mosq. Contr. Assoc. 46:23-28.Google Scholar
  40. Raymond, M., 1985. Présentation d'un programme basic d'analyse log-probit pour micro-ordinateur. Cah. O.R.S.T.O.M., Ser. Entomol. Med. Parasitol. 23:117-121.Google Scholar
  41. Rey, D., Marigo, G., and Pautou, M. P. 1996. Composés phénoliques chez Alnus glutinosa et contrôle des populations larvaires de Culicidae. C.R. Acad. Sci. Paris, Sci. Vie 319:1035-1042.Google Scholar
  42. Rey, D., Pautou, M. P., and Meyran, J. C. 1999. Histopathological effects of tannins on the midgut epithelium of aquatic Diptera larvae. J. Invertebr. Pathol. In press.Google Scholar
  43. Rioux, J. A., Croset, H., Corre, J. J., Simonneau, P., and Gras, G. 1968. Phyto-ecological basis of mosquito control: Cartography of larval biotopes. Mosquito News 28:572-582.Google Scholar
  44. Scott, J. A., Colins, F. H., and Feyereisen, R. 1994. Diversity of cytochrome P 450 genes in the mosquito, Anopheles albimanus. Biochem. Biophys. Res. Commun. 205:1452-1459.PubMedGoogle Scholar
  45. Smirle, M. J., Lowery, D. T., and Zurowski, C. I. 1996. Influence of neem oil on detoxification enzyme activity in the oblique banded leafroller, Choristoneura rosaceana. Pestic. Biochem. Physiol. 56:220-203.Google Scholar
  46. Sota, T. 1993. Performance of Aedes albopictus and A. riversi larvae (Diptera: Culicidae) in waters that contain tannic acid and decaying leaves: Is the treehole species better adapted to treehole water? Ann. Entomol. Soc. Am. 86:450-457.Google Scholar
  47. Swain, T. 1979. Phenolics in the environment. Recent Adv. Phytochem. 12:617-640.Google Scholar
  48. Tellier, X., Steffan, J., and Buhlmann, A. 1991. Mécanismes d'apparition des phénomènes de résistance aux insecticides et acaricides: Conséquences pratiques. Rev. Med. Vet. 142:657-667.Google Scholar
  49. Towers, G. H. N., Neish, A. C., Brown, S. A., and Conn, E. E. 1964. Biochemistry of Phenolic Compounds. J. B. Harborne (ed.). Academic Press, New York.Google Scholar
  50. Ulrich, V., and Weber, P. 1972. The O-dealkylation of 7-ethoxycoumarin by liver microsomes. A direct fluorimetric test. Hoppe-Seyler's Z. Physiol. Chem. 353:1171-1177.PubMedGoogle Scholar
  51. Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 8:401-408.Google Scholar
  52. Wadliegh, R. W., and Yu, S. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepiddopterous species. J. Chem. Ecol. 14:1279-1288.Google Scholar
  53. Waxman, D. J., Ko, A., and Walsh, C. 1983. Regioselectivity and stereoselectivity of androgen hydroxylations catalyzed by cytochrome P 450 isozymes purified from phenobarbital-induced rat liver. J. Biol. Chem. 258:11937-11941.PubMedGoogle Scholar
  54. Waxman, D. J., Dannan, G. A., and Guengerich, F. P. 1985. Regulation of rat hepatic cytochrome P450: Age dependent expression, hormonal imprinting and xenobiotic inducibility of sex specific isoenzymes. Biochemistry 24:4409-4417.PubMedGoogle Scholar
  55. Yu, S. J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperla) and semispecialist (Anticarsia gemmatalis) insect. J. Chem. Ecol. 13:422-436.Google Scholar
  56. Yuan, J., and Chambers, H. W. 1996. Toxicology and biochemistry of two aliesterase inhibitors as synergists of four organophosphorus insecticides in boll weevils (Coleoptera: Curculionidae). Pestic. Biochem. Physiol. 54:210-219.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Delphine Rey
    • 1
  • Andre Cuany
    • 2
  • Marie-Paule Pautou
    • 1
  • Jean-Claude Meyran
    • 1
  1. 1.Laboratoire Hydrosystèmes Alpins, Centre de Biologie AlpineUniversité Joseph FourierGrenoble Cedex 9France
  2. 2.INRA, URRX, LBIAntibes CedexFrance

Personalised recommendations