Advertisement

Journal of Insect Behavior

, Volume 12, Issue 6, pp 737–752 | Cite as

The Visual Orientation Strategies of Mantis religiosa and Empusa fasciata Reflect Differences in the Structure of Their Visual Surroundings

  • Karl Kral
  • Dusan Devetak
Article

Abstract

In the present study, peering behaviour, which is used to measure distance by the image motion caused by head movement, is examined in two types of mantid. Mantis religiosa inhabits a region of dense grass consisting of uniform, generally uniformly aligned, and closely spaced elements and executes slow, simple peering movements. In contrast, Empusa fasciata climbs about in open regions of shrubs and bushes which consist of irregular, variably aligned and variably spaced elements and it executes comparatively quick, complex peering movements. Hence, it seems that in these two species of mantid, the same orientation mechanism has been adapted to the unique structures of their visual surroundings. Apparently M. religiosa uses motion parallax and E. fasciata uses a combination of motion parallax and forward and backward movements (image expansion/contraction over time) to detect object distances.

praying mantis visual behaviour adaptive behaviour depth perception image motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Buchner, E. (1984). Behavioral analysis of spatial vision in insects. In Ali, M. A. et al. (eds.), Photoreception and Vision in Invertebrates, Plenum Press, New York, pp. 561–621.Google Scholar
  2. Collett, T. S. (1978). Peering—a locust behavior pattern for obtaining motion parallax information. J. Exp. Biol. 76: 237–241.Google Scholar
  3. Collett, T. S., and Paterson, C. J. (1991). Relative motion parallax and target localisation in the locust, Schistocerca gregaria. J. Comp. Physiol. A 169: 615–621.Google Scholar
  4. Collett, T. S. (1993). Orientation detectors in insects. Nature 362: 494.Google Scholar
  5. Ergene, S. (1953). Homochrome Farbanpassungen bei Mantis religiosa. Z. vergl. Physiol. 35: 36–41.Google Scholar
  6. Fagan, W. F., and Odell, G. M. (1996). Size-dependent cannibalism in praying mantids: using biomass flux to model size-structured populations. Amer. Nat. 147: 230–268.Google Scholar
  7. Horridge, G. A. (1986). A theory of insect vision: velocity parallax. Proc. R. Soc. Lond. B 229: 13–27.Google Scholar
  8. Kaltenbeck, A. (1963). Kritische Untersuchungen zur Systematik, Biologie und Verbreitung der europäischen Fangheuschrecken (Dictyoptera-Mantidae). Zool. Jb. Syst. 90: 521–598.Google Scholar
  9. Kral, K. (1998a). Spatial vision in the course of an insect's life. Brain Behav. Evol. 52: 1–6.Google Scholar
  10. Kral, K. (1998b). Side-to-side head movements to obtain motion depth cues: A short review of research on the praying mantis. Behav. Proc. 43: 71–77.Google Scholar
  11. Kral, K. (1999). Binocular vision and distance estimation. In Prete, F. R. et al. (eds.), The Praying Mantids, The Johns Hopkins University Press, Baltimore and London, pp. 114–140.Google Scholar
  12. Kral, K., and Poteser, M. (1997). Motion parallax as a source of distance information in locusts and mantids. J. Insect Behav. 10: 145–163.Google Scholar
  13. Poteser, M. (1995). Die Rolle der Eigenbewegung der Gottesanbeterin Polyspilota sp. bei der Entfernungsmessung zu stationären Objekten im Verlauf der postembryonalen Entwicklung. Master thesis, University Graz, Graz.Google Scholar
  14. Poteser, M. (1998). Die Bedeutung der Bewegungsparallaxe für die räumliche Orientierung von Insekten am Beispiel der Gottesanbeterin Tenodera sinensis. Doctoral thesis, University Graz, Graz.Google Scholar
  15. Poteser, M., and Kral, K. (1995). Visual distance discrimination between stationary targets in praying mantis: an index of the use of motion parallax. J. Exp. Biol. 198: 2127–2137.Google Scholar
  16. Poteser, M., Pabst, M.-A., and Kral, K. (1998). Proprioceptive contribution to distance estimation by motion parallax in a praying mantid. J. Exp. Biol. 201: 1483–1491.Google Scholar
  17. Prete, F. R. (1993). Stimulus configuration and location in the visual field affect appetitive responses by the praying mantis, Sphodromantis lineola (Burr.). Vis. Neurosc. 10: 997–1005.Google Scholar
  18. Rathet, I. H., and Hurd, L. E. (1983). Ecological relationships of three co-occurring mantids, Tenodera sinensis (Saussure), T. angustipennis (Saussure), and Mantis religiosa (Linnaeus). Amer. Midl. Nat. 110: 240–248.Google Scholar
  19. Sobel, E. C. (1990). The locust's use of motion parallax to measure distance. J. Comp. Physiol. 167: 579–588.Google Scholar
  20. Walcher, F., and Kral, K. (1994). Visual deprivation and distance estimation in the praying mantis larvae. Physiol. Entomol. 19: 230–240.Google Scholar
  21. Wallace, G. K. (1959). Visual scanning in the desert locust Schistocerca gregaria (Forskål). J. Exp. Biol. 36: 512–525.Google Scholar
  22. Wehner, R. (1981). Spatial vision in arthropods. In Autrum, H. (ed.), Handbook of Sensory Physiology, vol. VII/6C, Springer Verlag, Berlin, pp. 287–616.Google Scholar
  23. Werner, F. (1933). Ergebnisse einer zoologischen Studien-und Sammelreise nach den Inseln des Ägäischen Meeres. Ibidem 142: 185–204.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Karl Kral
    • 1
  • Dusan Devetak
    • 2
  1. 1.Institute of ZoologyUniversity of GrazGrazAustria
  2. 2.Department of Biology, Pedagogical FacultyUniversity of MariborMariborSlovenia

Personalised recommendations