Journal of Applied Electrochemistry

, Volume 32, Issue 9, pp 1005–1010

Kinetics of hydrogen evolution on submicron size Co, Ni, Pd and Co–Ni alloy powder electrodes by d.c. polarization and a.c. impedance studies

  • P. Elumalai
  • H.N. Vasan
  • N. Munichandraiah
  • S.A. Shivashankar
Article

Abstract

Submicron size Co, Ni and Co–Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction (HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade−1 for the Tafel slope, suggesting that the HER follows the Volmer–Heyrovsky mechanism. The values of exchange current density (io) are in the range 1–10 mA cm−2 for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (io) and energy transfer coefficient (α) have been calculated by employing a nonlinear least square-fitting program.

a.c. impedance d.c. polarization hydrogen evolution submicron size particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O'M Bockris and S. Srinivasan, Electrochim. Acta 9 (1964) 31.Google Scholar
  2. 2.
    S. Trasatti, in H. Grischer and C.W. Tobias (Eds), ‘Advances in Electrochemical Science and Engineering’, Vol. 2 (VCH, New York, 1992, p. 594.Google Scholar
  3. 3.
    B.E. Conway and G. Jerkiewicz, J. Electroanal. Chem. 357 (1993) 47.Google Scholar
  4. 4.
    A. Rami and A. Lasia, J. Appl. Electrochem. 22 (1992) 376.Google Scholar
  5. 5.
    J. Divisek, H. Schmitz and J. Balej, J. Appl. Electrochem. 19 (1989) 519.Google Scholar
  6. 6.
    I.A. Rat and K.I. Vasu, J. Appl. Electrochem. 20 (1990) 32.Google Scholar
  7. 7.
    L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 1058.Google Scholar
  8. 8.
    L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 3458.Google Scholar
  9. 9.
    P. Los and A. Lasia, J. Electroanal. Chem. 333 (1992) 115.Google Scholar
  10. 10.
    J.J. Borodzinski and A. Lasia, J. Appl. Electrochem. 24 (1994) 1267.Google Scholar
  11. 11.
    H. Ezaki, T. Nambu, M. Morinaga, M. Udaka and K. Kawasaki, Int. J. Hydrogen Energy 21 (1996) 877.Google Scholar
  12. 12.
    K. Lian, D.W. Krirk and S.J. Thorpe, Electrochim. Acta 36 (1991) 537.Google Scholar
  13. 13.
    I. Paseka and J. Velika, Electrochim. Acta 42 (1997) 237.Google Scholar
  14. 14.
    N.C. Adriana, S.A.S. Machado and L.A. Avaca, Electrochem. Commun. 1 (1999) 600.Google Scholar
  15. 15.
    M. Enyo and P.C. Biswas, J. Electroanal. Chem. 335 (1992) 309.Google Scholar
  16. 16.
    L.D. Burke and J.K. Casey, J. Appl. Electrochem. 23 (1993) 573.Google Scholar
  17. 17.
    N.V. Krstajic, S. Burojevic and Lj.M. Vracar, Int. J. Hydrogen Energy 25 (2000) 635.Google Scholar
  18. 18.
    G. Viau, F. Fiévet-Vincent and F. Fiévet, Solid State Ionics 84 (1996) 259.Google Scholar
  19. 19.
    H.N. Vasan and C.N.R. Rao, J. Mater. Chem. 5 (1995) 1755.Google Scholar
  20. 20.
    J. Prabhuram, R. Manoharan and H.N. Vasan, J. Appl. Electrochem. 28 (1998) 935.Google Scholar
  21. 21.
    P. Elumalai, H.N. Vasan, M. Verelst, P. Lecante, V. Carles and P. Tailhades, Mater. Res. Bull. 37 (2002) 355.Google Scholar
  22. 22.
    B.A. Boukamp, ‘Equivalent circuit users manual’ (University of Twent, Enschede, 1989), p. 26.Google Scholar
  23. 23.
    J. Divisek, J. Electroanal. Chem. 214 (1986) 615.Google Scholar
  24. 24.
    L. Chen and A. Lasia, J. Electrochem. Soc. 138 (1991) 3321.Google Scholar
  25. 25.
    N. Spataru, J-G. Lehelloca and R. Durand, J. Appl. Electrochem. 26 (1996) 397.Google Scholar
  26. 26.
    R. Notoya, Electrochim. Acta 42 (1997) 899.Google Scholar
  27. 27.
    A.N. Frumkin, in P. Delahay and C. Tobias (Eds), ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 3 (John Wiley & Sons, New York, 1963), p. 287.Google Scholar
  28. 28.
    R. Šimpraga, L. Bai and B.E. Conway, J. Appl. Electrochem. 25 (1995) 628.Google Scholar
  29. 29.
    R. De Levie, J. Electroanal. Chem. 281 (1990) 1.Google Scholar
  30. 30.
    P. Elumalai, H.N. Vasan and N. Munichandraiah, J. Solid State Electrochem. 3 (1999) 470.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • P. Elumalai
    • 1
  • H.N. Vasan
    • 1
  • N. Munichandraiah
    • 2
  • S.A. Shivashankar
    • 3
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Materials Research CenterIndian Institute of ScienceBangaloreIndia

Personalised recommendations