Multibody System Dynamics

, Volume 8, Issue 3, pp 365–389 | Cite as

A DAE Approach to Flexible Multibody Dynamics

  • P. Betsch
  • P. Steinmann
Article

Abstract

The present work deals with the dynamics of multibody systems consisting ofrigid bodies and beams. Nonlinear finite element methods are used to devise a frame-indifferent spacediscretization of the underlying geometrically exact beam theory. Both rigid bodies and semi-discrete beams are viewed as finite-dimensional dynamical systems with holonomic constraints. The equations of motion pertaining to the constrained mechanical systems under considerationtake the form of Differential Algebraic Equations (DAEs).The DAEs are discretized directly by applying a Galerkin-based method.It is shown that the proposed DAE approach provides a unified framework for the integration of flexible multibody dynamics.

constrained mechanical systems differential algebraic equations energy-momentum methods finite rotations multibody systems structural dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stuart, A.M. and Humphries, A.R., Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996.Google Scholar
  2. 2.
    Simo, J.C. and Tarnow, N., 'The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics', Z. angew. Math. Phys. (ZAMP) 43, 1992, 757-792.Google Scholar
  3. 3.
    Simo, J.C. and Tarnow, N., 'A new energy and momentum conserving algorithm for the nonlinear dynamics of shells', Internat. J. Numer. Methods Engrg. 37, 1994, 2527-2549.Google Scholar
  4. 4.
    Bauchau, O.A. and Theron, N.J., 'Energy decaying scheme for non-linear beam models', Comput. Methods Appl. Mech. Engrg. 134, 1996, 37-56.Google Scholar
  5. 5.
    Kuhl, D. and Crisfield, M.A., 'Energy-conserving and decaying algorithms in non-linear structural mechanics', Internat. J. Numer. Methods Engrg. 45, 1999, 569-599.Google Scholar
  6. 6.
    Betsch, P. and Steinmann, P., 'Conservation properties of a time FE method. Part II: Timestepping schemes for nonlinear elastodynamics', Internat. J. Numer. Methods Engrg. 50, 2001, 1931-1955.Google Scholar
  7. 7.
    Armero, F. and Romero, I., 'On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: Second-order methods', Comput. Methods Appl. Mech. Engrg. 190, 2001, 6783-6824.Google Scholar
  8. 8.
    Bauchau, O.A. and Bottasso, C.L., 'On the design of energy preserving and decaying schemes for flexible', nonlinear multi-body systems', Comput. Methods Appl. Mech. Engrg. 169, 1999, 61-79.Google Scholar
  9. 9.
    Crisfield, M.A. and Jelenić, G., 'Energy/momentum conserving time integration procedures with finite elements and large rotations', in J. Ambrósio and M. Kleiber (eds), NATO-ARW on Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, Pultusk, Poland, July 2-7, 2000, 181-200.Google Scholar
  10. 10.
    Ibrahimbegović, A. and Mamouri, S., 'On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3d geometrically exact beam model', Comput. Methods Appl. Mech. Engrg. 188, 2000, 805-831.Google Scholar
  11. 11.
    Goicolea, J.M. and Orden, J.C.G., 'Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes', Comput. Methods Appl. Mech. Engrg. 188, 2000, 789-804.Google Scholar
  12. 12.
    Ibrahimbegović, A., Mamouri, S., Taylor, R.L. and Chen, A.J., 'Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes', Multibody System Dynam. 4, 2000, 195-223.Google Scholar
  13. 13.
    Géradin, M. and Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach, John Wiley & Sons, New York, 2001.Google Scholar
  14. 14.
    Potra, F. and Rheinboldt, W.C., 'Differential-geometric techniques for solving differential algebraic equations', in Real-Time Integration Methods for Mechanical System Simulation, E.J. Haug and R.C. Dey (eds), NATO ASI Series, Vol. F69, Springer-Verlag, Berlin, 1991, 155-191.Google Scholar
  15. 15.
    Reich, S., 'On a geometrical interpretation of differential-algebraic equations', Circuits Systems Signal Process 9(4), 1990, 367-382.Google Scholar
  16. 16.
    Betsch, P. and Steinmann, P., 'Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints', Internat. J. Numer. Methods Engrg. 53, 2002, 2271-2304.Google Scholar
  17. 17.
    Betsch, P. and Steinmann, P., 'Inherently energy conserving time finite elements for classical mechanics', J. Comput. Phys. 160, 2000, 88-116.Google Scholar
  18. 18.
    Betsch, P. and Steinmann, P., 'Conservation properties of a time FE method. Part I: Timestepping schemes for N-body problems', Internat. J. Numer. Methods Engrg. 49, 2000, 599-638.Google Scholar
  19. 19.
    Eriksson, K., Estep, D., Hansbo, P. and Johnson, C., Computational Differential Equations, Cambridge University Press, Cambridge, 1996.Google Scholar
  20. 20.
    Arnold, V.I., Kozlov, V.V. and Neishtadt, A.I., 'Mathematical aspects of classical and celestial mechanics', in Dynamical Systems III, 2nd edn., V.I. Arnold (ed.), Encyclopedia of Mathematical Sciences, Vol. III, Springer-Verlag, Berlin, 1993.Google Scholar
  21. 21.
    Goldstein, H., Classical Mechanics, 2nd edn., Addison-Wesley, London, 1980.Google Scholar
  22. 22.
    Brenan, K.E., Campbell, S.L. and Petzold, L.R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn., SIAM, Philadelphia, PA, 1996.Google Scholar
  23. 23.
    Marsden, J.E. and Ratiu, T.S., Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994.Google Scholar
  24. 24.
    Ascher, U.M., Chin, H., Petzold, L.R. and Reich, S., 'Stabilization of constrained mechanical systems with DAEs and invariant manifolds', Mech. Structures Mach. 23, 1995, 135-158.Google Scholar
  25. 25.
    Seiler,W.M., 'Numerical integration of constrained Hamiltonian systems using Dirac brackets', Math. Comput. 68(226), 1999, 661-681.Google Scholar
  26. 26.
    Gear, C.W., Gupta, G.K. and Leimkuhler, B.J., 'Automatic integration of the Euler-Lagrange equations with constraints', J. Comput. Appl. Math. 12, 1985, 77-90.Google Scholar
  27. 27.
    Potra, F. and Yen, J., 'Implicit numerical integration for Euler-Lagrange equations', Mech. Structures Mach. 19, 1991, 76-98.Google Scholar
  28. 28.
    Borri, M., Bottasso, C.L. and Trainelli, L., 'An embedded projection method for index-3 constrained mechanical systems', in Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, J.A.C. Ambrósio and M. Kleiber (eds), NATO Science Series: Computer & Systems Sciences, Vol. 179, IOS Press, Amsterdam, 2001, 237-251.Google Scholar
  29. 29.
    Haug, E.J., Computer-Aided Kinematics and Dynamics ofMechanical Systems. Volume I: Basic Methods, Allyn & Bacon, Boston, MA, 1989.Google Scholar
  30. 30.
    Wendlandt, J.M. and Marsden, J.E., 'Mechanical integrators derived from a discrete variational principle', Phys. D 106, 1997, 223-246.Google Scholar
  31. 31.
    Garcia de Jalon, J. and Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge, Springer-Verlag, Berlin, 1994.Google Scholar
  32. 32.
    Taylor, R.L., 'Finite element analysis of rigid-flexible systems', in Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, J.A.C. Ambrósio and M. Kleiber (eds) NATO Science Series: Computer & Systems Sciences, Vol. 179, IOS Press, LondonGoogle Scholar
  33. 33.
    Betsch, P. and Steinmann, P., 'Constrained integration of rigid body dynamics', Comput. Methods Appl. Mech. Engrg. 191, 2001, 467-488.Google Scholar
  34. 34.
    Truesdell, C., A First Course in Rational Continuum Mechanics, Academic Press, San Diego, CA, 1977.Google Scholar
  35. 35.
    Gurtin,M.E., An Introduction to Continuum Mechanics, Academic Press, San Diego, CA, 1981.Google Scholar
  36. 36.
    Betsch, P. and Steinmann, P., 'Frame-indifferent beam finite elements based upon the geometrically exact beam theory', Internat. J. Numer. Methods Engrg. 54, 2002, 1775-1788.Google Scholar
  37. 37.
    Antman, S.S., Nonlinear Problems of Elasticity, Applied Mathematical Sciences, Vol. 107, Springer-Verlag, Berlin, 1995.Google Scholar
  38. 38.
    Simo, J.C., 'A finite strain beam formulation. The three-dimensional dynamic problem. Part I', Comput. Methods Appl. Mech. Engrg. 49, 1985, 55-70.Google Scholar
  39. 39.
    Simo, J.C., Tarnow, N. and Doblare, M., 'Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms', Internat. J. Numer. Methods Engrg. 38, 1995, 1431-1473.Google Scholar
  40. 40.
    Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures. Volume 2: Advanced Topics, John Wiley & Sons, New York, 1997.Google Scholar
  41. 41.
    Ibrahimbegović, A. and Al Mikdad, M., 'Finite rotations in dynamics of beams and implicit time-stepping schemes', Internat. J. Numer. Methods Engrg. 41, 1998, 781-814.Google Scholar
  42. 42.
    Hulbert, G.M., 'Efficient and robust computational algorithms for the solution of nonlinear flexible multibody sytems', in Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, J.A.C. Ambrósio and M. Kleiber (eds), NATO Science Series: Computer & Systems Sciences, Vol. 179, IOS Press, Amsterdam, 2001, 141-152.Google Scholar
  43. 43.
    Crisfield,M.A. and Jelenić, G., 'Objectivity of strain measures in the geometrically exact threedimensional beam theory and its finite-element implementation', Proc. Roy. Soc. London A 455, 1999, 1125-1147.Google Scholar
  44. 44.
    Jelenić, G. and Crisfield, M.A., 'Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics', Comput. Methods Appl. Mech. Engrg. 171, 1999, 141-171.Google Scholar
  45. 45.
    Romero, I. and Armero, F., 'An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics', Internat. J. Numer. Methods Engrg. 54, 2002, 1683-1716.Google Scholar
  46. 46.
    Hughes, T.J.R., The Finite Element Method, Dover Publications, New York, 2000.Google Scholar
  47. 47.
    Dirac, P.A.M., 'On generalized Hamiltonian dynamics', Canad. J. Math. 2, 1950, 129-148.Google Scholar
  48. 48.
    Betsch, P., Menzel, A. and Stein, E., 'On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells', Comput. Methods Appl. Mech. Engrg. 155, 1998, 273-305.Google Scholar
  49. 49.
    Bottasso, C.L., Bauchau, O.A. and Choi, J.-Y., 'An energy decaying scheme for nonlinear dynamics of shells', Comput. Methods Appl. Mech. Engrg. 191, 2002, 3099-3121.Google Scholar
  50. 50.
    Bauchau, O.A., Personal communications.Google Scholar
  51. 51.
    Mäkinen, J., 'Critical study of Newmark-scheme on manifold of finite rotations', Comput. Methods Appl. Mech. Engrg. 191, 2001, 817-828.Google Scholar
  52. 52.
    Chen, S., Hansen, J.M. and Tortorelli, D.A., 'Unconditionally energy stable implicit time integration: Application to multibody system analysis and design', Internat. J. Numer. Methods Engrg. 48, 2000, 791-822.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • P. Betsch
    • 1
  • P. Steinmann
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations