Advertisement

Journal of Chemical Ecology

, Volume 25, Issue 8, pp 1827–1842 | Cite as

Plant Latex and First-Instar Monarch Larval Growth and Survival on Three North American Milkweed Species

  • Myron P. Zalucki
  • Stephen B. Malcolm
Article

Abstract

First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.

Asclepias cardenolide Danaus plexippus growth rate latex laticifer milkweed neonate larvae plant defense survival 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ackery, P. R., and Vane-Wright, R. I. 1984. Milkweed Butterflies: Their Cladistics and Biology. Cornell University Press, Ithaca, New York.Google Scholar
  2. Baldwin, I. T. 1989. Mechanism of damage-induced alkaloid production in wild tobacco. J. Chem. Ecol. 15:1661-1680.Google Scholar
  3. Baldwin, I. T. 1991. Damage-induced alkaloids in wild tobacco, pp. 47-69, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.Google Scholar
  4. Baldwin, I. T., and Ohnmeiss, J. T. 1994. Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris. Ecology 75(4):1003-1004.Google Scholar
  5. Baldwin, I. T., Karb, M. J., and Ohnmeiss, T. E. 1994a. Allocation of 15N from nitrate to nicotine: Production and turnover of a damage-induced mobile defense. Ecology 75(6):1703-1713.Google Scholar
  6. Baldwin, I. T., Schmelz, E. A., and Ohnmeiss, T. E. 1994b. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20(8):2139-2157.Google Scholar
  7. Berenbaum, M. 1981. Effects of linear furanocoumarins on an adapted specialist insect (Papilio polyxenes). Ecol. Entomol. 6:345-351.Google Scholar
  8. Bhowmik, P. C., and Bandeen, J. D. 1976. The biology of Canadian weeds 19. Asclepias syriaca L. Can. J. Plant Sci. 56:579-589.Google Scholar
  9. Brewer, J. 1977. Short lived phenomena. News Lepid. Soc. 4:7.Google Scholar
  10. Brower, L. P. 1961. Studies on the migration of the monarch butterfly I. Breeding populations of Danaus plexippus and D. gilippus berenice in south central Florida. Ecology 42(1):76-83.Google Scholar
  11. Brower, L. P. 1984. Chemical defensse in butterflies. Symp. R. Entomol. Soc. London 11:109-134.Google Scholar
  12. Brower, L. P., Nelson, C. J., Seiber, J. N., Fink, L. S., and Bond, C. 1988. Exaptation as an alternative to co-evolution in the cardenolide-based chemical defense of monarch butterflies (Danaus plexippus L.) against avian predators, pp. 447-475, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.Google Scholar
  13. Cohen, J. A., and Brower, L. P. 1982. Oviposition and larval success of wild monarch butterflies (Lepidoptera: Danaidae) in relation to host size and cardenolide concentration. J. Kans. Entomol. Soc. 55:343-348.Google Scholar
  14. Dempster, J. P. 1983. The natural control of populations of butterflies and moths. Biol. Rev. 58:461-481.Google Scholar
  15. Dixon, C. A., Erikson, J. M., Kellet, D. N., and Rothschild, M. 1978. Some adaptations between Danaus plexippus and its food plant, with notes on Danaus chrysippus and Euploea core (Insecta: Lepidoptera). J. Zool. London 185:437-467.Google Scholar
  16. Dussourd, D. E. 1990. The vein drain: or how insects outsmart plants. Nat. Hist. 90:44-49.Google Scholar
  17. Dussourd, D. E. 1993. Foraging with Finesse: Caterpillar adaptations for circumventing plant defenses, pp. 93-131, in N. E. Stamp and T. M. Casey (eds.). Caterpillars. Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York.Google Scholar
  18. Dussourd, D. E., and Eisner, T. 1987. Vein-cutting behaviour: Insect counterploy to the latex defense of plants. Science 237:898-901.Google Scholar
  19. Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1-40.Google Scholar
  20. Gould, F. 1988. Genetics of pairwise and multispecies plant-herbivore coevolution, pp. 13-55, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.Google Scholar
  21. Horisberger, J.-D. 1994. The NaK-ATPase: Structure-function relationship. R. G. Landes Company, Austin, Texas.Google Scholar
  22. Karban, R. 1991. Inducible resistance in agricultural systems, pp. 403-419, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.Google Scholar
  23. Karban, R., and Adler, F. R. 1996. Induced resistance to herbivores and the information content of early season attack. Oecologia 107:379-385.Google Scholar
  24. Karban, R., and Niiho, C. 1995. Induced resistance and susceptibility to herbivory: Plant memory and altered plant development. Ecology 76(4):1220-1225.Google Scholar
  25. Kyi, A., Zalucki, M. P., and Titmarsh, I. J. 1991. Factors affecting the survival of the early stages of Heliothis armigera (Hubner) (Lepidoptera: Noctuidae). Bull. Entomol. Res. 81:263-271.Google Scholar
  26. Lucansky, T. W., and Cloug, K. T. 1986. Comparative anatomy and morphology of Asclepias perennis and A. tuberosa subspecies rolfsii. Bot. Gaz. 147:290-301.Google Scholar
  27. Malcolm, S. B. 1991. Cardenolide-mediated interactions between plants and herbivores, pp. 251-296, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, Second Edition. Volume I: The Chemical Participants. Academic Press, San Diego.Google Scholar
  28. Malcolm, S. B. 1995. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5/6:101-117.Google Scholar
  29. Malcolm, S. B., and Brower, L. P. 1986. Selective oviposition by monarch butterflies (Danaus plexippus L.) in a mixed stand of Asclepias curassavica L. and A. incarnata L. in south Florida. J. Lepid. Soc. 40:255-263.Google Scholar
  30. Malcolm, S. B., and Brower, L. P. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284-295.Google Scholar
  31. Malcolm, S. B., and Zalucki, M. P. 1996. Milkweed latex and cardenolide induction may resolve the lethal plant defense paradox. Entomol. Exp. Appl. 80:193-196.Google Scholar
  32. Malcolm, S. B., Cockrell, B. J., and Brower, L. P. 1989. Cardenolide fingerprint of monarch butterflies reared on the common milkweed, Asclepias syriaca L. J. Chem. Ecol. 15:819-853.Google Scholar
  33. Malcolm, S. B., Cockrell, B. J., and Brower, L. P. 1993. Spring recolonization of eastern North America by the monarch butterfly: Successive brood or single sweep migration? pp. 253-267, in S. B. Malcolm and M. P. Zalucki (eds.). Biology and Conservation of the Monarch Butterfly. Natural History Museum of Los Angeles County Science Series No. 38, Los Angeles.Google Scholar
  34. McCloud, E. S., Tallamy, D. W., and Halaweish, F. T. 1995. Squash beetle trenching behaviour: Avoidance of cucurbitacin induction or mucilaginous plant sap? Ecol. Entomol. 20:51-59.Google Scholar
  35. Nelson, C. J. 1993. Sequestration and storage of cardenolides and cardenolide glycosides by Danaus plexippus L. and D. chrysippus petilia (Stoll) when reared on Asclepias fruticosa L.; a review of some factors that influence sequestration, pp. 91-105, in S. B. Malcolm and M. P. Zalucki (eds.). Biology and Conservation of the Monarch Butterfly. Natural History Museum of Los Angeles County Science Series No. 38, Los Angeles.Google Scholar
  36. Nelson, C. J., Seiber, J. N., and Brower, L. P. 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense. J. Chem. Ecol. 7:981-1010.Google Scholar
  37. Oyeyele, S., and Zalucki, M. P. 1990. Cardiac glycosides and oviposition by Danaus plexippus on Asclepias fruticosa in south-east Queensland (Australia), with notes on the effects of plant nitrogen. Ecol. Entomol. 15:177-185.Google Scholar
  38. Petricic, J. 1966. Über die cardenolide der wurzeln von Asclepias tuberosa L. Arch. Pharm. 299:1007-1011.Google Scholar
  39. Polowick, P. L., and Raju, M. V. S. 1982. The origin and development of root buds in Asclepias syriaca. Can. J. Bot. 60:2119-2125.Google Scholar
  40. Rhoades, D. F., and Cates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 10:168-213.Google Scholar
  41. Roeske, C. N., Seiber, J. N., Brower, L. P., and Moffitt, C. M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.). Recent Adv. Phytochem. 10:168-213.Google Scholar
  42. Rothschild, M. 1977. The cat-like caterpillar. News Lepid. Soc. 6:9.Google Scholar
  43. Scriber, J. M. 1984. Host-plant suitability, pp. 159-202, in W. J. Bell and R. T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  44. Seiber, J. N., Nelson, C. J., and Lee, S. M. 1982. Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Phytochemistry 21:2343-2348.Google Scholar
  45. Tallamy, D. W., and McCloud, E. S. 1991. Squash beetles, cucumber beetles, and inducible cucurbit responses, pp. 155-181, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.Google Scholar
  46. Van Emon, J. V., and Seiber, J. N. 1985. Chemical constituents and energy content of two milkweeds, Asclepias speciosa and A. curassavica. Econ. Bot. 39:47-55.Google Scholar
  47. Van Hook, T., and Zalucki, M. P. 1991. Oviposition by Danaus plexippus on Asclepias viridis in northern Florida. J. Lepid. Soc. 45:215-221.Google Scholar
  48. Wilson, K. J., and Mahlberg, P. G. 1980. Ultrastructure of developing and mature nonarticulated laticifers in the milkweed, Asclepias syriaca L. (Asclepiadaceae). Am. J. Bot. 67:1160-1170.Google Scholar
  49. Woodson, R. E., Jr. 1954. The North American species of Asclepias L. Ann. Miss. Bot. Gard. 41:1-211.Google Scholar
  50. Zalucki, M. P. 1982. Temperature and rate of development in Danus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). J. Aust. Entomol. Soc. 21:241-246.Google Scholar
  51. Zalucki, M. P., and Brower, L. P. 1992. Survival of first instar larvae of Danaus plexippus (Lepidoptera: Danainae) in relation to cardiac glycoside and latex content of Asclepias humistrata (Asclepiadaceae). Chemoecology 3:81-93.Google Scholar
  52. Zalucki, M. P., and Kitching, R. L. 1982a. Temporal and spatial variation of mortality in field populations of Danaus plexippus L. and D. chrysippus L. larvae. Oecologia 53:201-207.Google Scholar
  53. Zalucki, M. P., and Kitching, R. L. 1982b. Dynamics of oviposition in Danaus plexippus (Insecta: Lepidoptera) on milkweed, Asclepias spp. J. Zool. 198:103-116.Google Scholar
  54. Zalucki, M. P., Oyeyele, S., and Vowles, P. 1989. Selective oviposition by Danaus plexippus L. (Lepidoptera: Nymphalidae) in a mixed stand of Asclepias fruticosa and A. curassavica in southeast Queensland. J. Aust. Entomol. Soc. 28:141-146.Google Scholar
  55. Zalucki, M. P., Brower, L. P., and Malcolm, S. B. 1990. Oviposition by Danaus plexippus in relation to cardenolide content of three Asclepias species in the southeastern U.S.A. Ecol. Entomol. 15:231-240.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Myron P. Zalucki
    • 1
  • Stephen B. Malcolm
    • 2
  1. 1.Department of Zoology and EntomologyThe University of QueenslandBrisbaneAustralia
  2. 2.Department of Biological SciencesWestern Michigan UniversityKalamazoo

Personalised recommendations