Journal of Mathematical Sciences

, Volume 113, Issue 2, pp 179–349 | Cite as

Pontryagin Duality in the Theory of Topological Vector Spaces and in Topological Algebra

  • S. S. Akbarov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces, ”Mat. Zametki, 57, No. 3, 463–466(1995).Google Scholar
  2. 2.
    S. S. Akbarov, “Pontryagin duality in the theory of topological modules, ”Funkts. Anal. Prilozh., 29, No. 4, 68–72(1995).Google Scholar
  3. 3.
    S. S. Akbarov, “Smooth structure and differential operators on a locally compact group, ”Izv. Rossi-isk. Akad. Nauk, Ser. Mat., 59, No. 1, 3–48(1995).Google Scholar
  4. 4.
    S. S. Akbarov, “Stereotype approximation property and the trace problem, ”Funkts. Anal. Prilozh., 33, No. 2, 68–73(1998).Google Scholar
  5. 5.
    S. S. Akbarov, “Stereotype group algebras, ”Mat. Zametki, 66, No. 6, 941–944(1999).Google Scholar
  6. 6.
    S. S. Akbarov, “Stereotype algebras with reflection and the bicommutant theorem, ”Mat. Zametki, 66, No. 5, 789–792(1999).Google Scholar
  7. 7.
    S. S. Akbarov, “Absolute homology theory of stereotype algebras, ”Funkts. Anal. Prilozh., 34, No. 1, 76–79(2000).Google Scholar
  8. 8.
    S. S. Akbarov, “Stereotype spaces, algebras, homologies: An outline, ”In: Topological Homology (A. Ya. Helemskii, Ed.), Nova Science Publishers(2000), pp. 1–29.Google Scholar
  9. 9.
    S. S. Akbarov, “Stereotype locally convex spaces, ”Izv. Ross. Akad. Nauk. Ser. Mat., 64, No. 4, 3–46 (2000).Google Scholar
  10. 10.
    V. A. Artamonov, V. N. Salij, L. A. Skornjakov, L. N. Shevrin, and E. G. Shulgeifer, General Algebra [in Russian ] Nauka, Moscow(1991).Google Scholar
  11. 11.
    E. Beckenstein, L. Narici, and C. Suffel, Topological Algebras, North Holland, Amsterdam(1977).Google Scholar
  12. 12.
    N. Bourbaki, Topological Vector Spaces, Hermann, Paris(1959).Google Scholar
  13. 13.
    N. Bourbaki, Topologie Generale. Chaps. III–VIII, Hermann, Paris(1960).Google Scholar
  14. 14.
    N. Bourbaki Algebre. Chaps. VII–IX, Hermann, Paris(1966).Google Scholar
  15. 15.
    N. Bourbaki, Groupes and Algebras de Lie. Chaps. I–III, Hermann, Paris(1971, 1972)Google Scholar
  16. 16.
    N. Bourbaki Algebre Homologique. Chap. X, Masson(1980).Google Scholar
  17. 17.
    K. Brauner, “Duals of Frech ´et spaces and a generalization of the Banach–Dieudonne theorem, ”Duke Math. J., 40, No. 4, 845–855(1973).Google Scholar
  18. 18.
    B. S. Brudovskii, “On k-and c-reflexivity, ”Lit. Mat. Sb., 7, No. 1, 17–21(1967).Google Scholar
  19. 19.
    V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press(1995).Google Scholar
  20. 20.
    C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Inter-science(1962).Google Scholar
  21. 21.
    E. J. Dubuc and H. Porta, “Convenient categories of topological algebras, ”Bull. Amer. Math. Soc., 77, No. 6, 975–979(1971).Google Scholar
  22. 22.
    P. Enflo, “A counterexample to the approximation problem in Banach spaces, ”Acta Math., 130, 309–317(1973).Google Scholar
  23. 23.
    R. Engelking, General Topology, Warszawa(1977).Google Scholar
  24. 24.
    A. Grothendieck, “Produits tensoriels topologiques et espaces nucleaires, ”Mem. Amer. Math. Soc., 16(1955).Google Scholar
  25. 25.
    A. Ya. Helemskii, Homology in Banach and Topological Algebras [in Russian ], Moscow State Univer-sity(1986).Google Scholar
  26. 26.
    A. Ya. Helemskii, Banach and Polynormed Algebras:General Theory, Representations, and Homolo-gies [in Russian ]Nauka, Moscow(1989).Google Scholar
  27. 27.
    A. Ya. Helemskii, “31 problems of the homology of the algebras of analysis, ”In: Linear and Complex Analysis Problem Book, Part I. Lect. Notes Math., Vol. 1573, Springer-Verlag(1994).Google Scholar
  28. 28.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer(1963).Google Scholar
  29. 29.
    H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart(1981).Google Scholar
  30. 30.
    J. L. Kelley, General Topology, Van Nostrand(1957).Google Scholar
  31. 31.
    G. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Note Ser., Vol. 64(1982).Google Scholar
  32. 32.
    S. Lang, Algebra, Addison-Wesley(1965).Google Scholar
  33. 33.
    G. L. Litvinov, “Approximation property of locally convex spaces and the problem of uniqueness of the trace of a linear operator, ”Selec. Mat. Sov., 11, No. 1, 25–40(1992).Google Scholar
  34. 34.
    G. L. Litvinov, “Nuclear operators, ”In: Mathematical Encyclopedia [in Russian ], Vol. 5(1985).Google Scholar
  35. 35.
    G. L. Litvinov, “Representations of groups in locally convex spaces and topological group algebras, ” Selec. Mat. Sov., 7, No. 2, 101–182(1988).Google Scholar
  36. 36.
    S. MacLane, Homology, Springer(1963).Google Scholar
  37. 37.
    S. MacLane, Categories for the Working Mathematician, Springer, Berlin(1971).Google Scholar
  38. 38.
    A. Mallios, Topological Algebras, North Holland, Amsterdam(1986).Google Scholar
  39. 39.
    A. Pietsch, Nukleare Lokalkonvexe Raume, Akademie-Verlag, Berlin(1965).Google Scholar
  40. 40.
    A. Yu. Pirkovskii, “On the problem of the existence of injective resolutions for Frech ´et modules over a nonnormable Frech ´et algebra, ”Izv. Ross. Akad. Nauk, Ser. Mat., 62, No. 4, 137–154(1998).Google Scholar
  41. 41.
    A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge University Press(1964).Google Scholar
  42. 42.
    B. V. Shabat, Introduction to Complex Analysis [in Russian ], Nauka, Moscow(1985).Google Scholar
  43. 43.
    H. H. Shaeffer, Topological Vector Spaces, Macmillan(1966).Google Scholar
  44. 44.
    M. F. Smith, “The Pontrjagin duality theorem in linear spaces, ”Ann. Math., 56, No. 2, 248–253 (1952).Google Scholar
  45. 45.
    O. G. Smolyanov, “The space D(X)is not inherently complete, ”Izv. Akad. Nauk SSSR, Ser. Mat., 35, 686–696(1971).Google Scholar
  46. 46.
    A. Szankowski, “B(H)does not have the approximation property, ”Act. Math., 147, 89–108(1981).Google Scholar
  47. 47.
    J. L. Taylor, “Homology and cohomology for topological algebras, ”Adv. Math., 9, 137–182(1972).Google Scholar
  48. 48.
    B. L. Van der Waerden, Algebra, Springer(1971).Google Scholar
  49. 49.
    E. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian ], URSS, Moscow(1995).Google Scholar
  50. 50.
    F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer(1983).Google Scholar
  51. 51.
    W. C. Waterhouse, “Dual groups of vector spaces, ”Pacific J. Math., 26, No. 1, 193–196(1968).Google Scholar
  52. 52.
    W. Zelazko, Topological Groups and Algebras, Inst. Math. Polish. Acad. Sci. Warszawa(1967–1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • S. S. Akbarov

There are no affiliations available

Personalised recommendations