Neurochemical Research

, Volume 24, Issue 1, pp 37–42 | Cite as

Inactivation of the Purified Bovine μ Opioid Receptor by Sulfhydryl Reagents

  • Theresa L. Gioannini
  • Irma Onoprishvili
  • Jacob M. Hiller
  • Eric J. Simon

Abstract

We have investigated the role of cysteine residues in a highly purified μ opioid receptor protein (μORP) by examining the effect of -SH reagents on the binding of opioid ligands. Treatment of μORP, which is devoid of additional proteins, eliminates complications that arise from reaction of -SH reagents with other components, such as G proteins. Reagents tested include N-ethylmaleimide, 5,5′-dithiobis(2-nitrobenzoic) acid, and two derivatives of methanethiosulfonate. Specific opioid binding was inactivated by micromolar concentrations of all -SH reagents tested. Agonist binding ([3H]DAMGO) was much more sensitive to inactivation than antagonist binding ([3H]bremazocine). Prebinding μORP with 100 nM naloxone protected antagonist and agonist binding from inactivation by -SH reagents. The results of these experiments strongly suggest that at least one, and possibly more, reactive cysteine residue(s) is present on the μ opioid receptor protein molecule, positioned near the ligand binding site and accessible to -SH reagents.

Purified opioid receptor sulfhydryl reagent cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Minami, M. and Satoh, M. 1995. Molecular biology of the opioid receptors: structure, functions, and distributions. Neuroscience Research 23:121–45.Google Scholar
  2. 2.
    Knapp, R. A., Malatynska, E., Collins, N., Fang, L., Wang, J. Y., Hruby, V. J., Roeske, W. R., and Yamaura, H. I. 1995. Molecular Biology and pharmacology of cloned opioid receptors. FASEB J. 9:516–25.Google Scholar
  3. 3.
    Meng, F., Hoversten, M. T., Thompson, R. C., Taylor, L., Watson, S. J., and Akil, H. 1995. A chimeric study of the molecular basis of affinity and selectivity of the κ and δ opioid receptors potential role of extracellular domains. J. Biol. Chem. 270:12730–2736.Google Scholar
  4. 4.
    Surratt, C. K., Johnson, P. S., Moriwaki, A., Seidleck, B. K., Blaschak, C. J., Wang, J. B., and Uhl, G. R. 1994. Mu opiate receptor: charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J. Biol. Chem. 269:20548–0553.Google Scholar
  5. 5.
    Befort, K., Tabbara, L., Bausch, S., Chavkin, C., Evans, C. J., and Kieffer, B. L. 1996. The conserved aspartate residue in the third putative transmembrane domain of the δ opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49:216–23.Google Scholar
  6. 6.
    Wang, W. W., Shahrestanifar, Jin, J., and Howells, R. D. 1995. Studies on μ and δ opioid receptor selectivity utilizing chimeric and site-mutagenized receptors. Proc. Natl. Acad. Sci. 92:12436–12440.Google Scholar
  7. 7.
    Kong, H., Raynor, K., Yasuda, K., Moe, S. T., Portoghese, P. S., Bell, G. I., and Reisine, T. 1993. A single residue, aspartic acid 95, in the delta opioid receptor specifies selective high affinity agonist binding. J. Biol. Chem. 268:23055–3058.Google Scholar
  8. 8.
    Ehrlich, G. K., Andria, M. L., Zheng, X., Kieffer, B., Gioannini, T. L., Hiller, J. M., Rosenkranz, J. E., Veksler, B. M., Zukin, R. S., and Simon, E. J. 1998. Functional significance of cysteine residues in the δ opioid receptor studied by site-directed mutagenesis. Canadian J. of Physiol. and Pharmacol. 76:269–277.Google Scholar
  9. 9.
    Simon, E. J., Hiller, J. M., and Edelman, I. 1973. Stereospecific binding of the potent narcotic analgesic 3H-etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70:1947–949.Google Scholar
  10. 10.
    Pasternak, G. W., Wilson, H. A., and Snyder, S. H. 1975. Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol. Pharmacol. 11:340–51.Google Scholar
  11. 11.
    Simon, E. J., and Groth, J. 1975. Kinetics of opiate receptor inactivation by sulfhydryl reagents: evidence for conformational change in presence of sodium ions. Proc. Natl. Acad. Sci. USA 72:2404–407.Google Scholar
  12. 12.
    Ofri, D. and Simon, E. J. 1992. Sulfhydryl groups on opioid receptors revisited: Evidence for two sulfhydryl groups at or near the active site of the mu opioid receptor. Receptor 2:109–19.Google Scholar
  13. 13.
    Means, G. E., and Feeney, R. E. 1971 pp. 110–14 in The Chemical Modification of Proteins, Holden-Day, San Francisco, CA.Google Scholar
  14. 14.
    Mulliken-Kilpatrick, D., Larsen, N. E., and Blume, J. J. 1983. Protection of opiate receptors in NG108-15 cells against modification by N-ethylmaleimide. J. Neurosci. 3:145–52.Google Scholar
  15. 15.
    Smith, J. R. and Simon, E. J. 1980. Selective protection of stereospecific binding of the potent narcotic analgesic 3H-etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70:1947–1949.Google Scholar
  16. 16.
    Gioannini, T. L., Howard, A. D., Hiller, J. M., and Simon, E. J. 1985. Purification of an active opioid binding protein from bovine striatum. J. Biol. Chem. 260:15117–15121.Google Scholar
  17. 17.
    Fan, L.-Q., Gioannini, T. L., Wolinski, T., and Simon, E. J. 1995. Functional reconstitution of a highly purified μ-opioid binding protein with purified G-proteins in liposomes. J of Neurochem. 65:2537–542.Google Scholar
  18. 18.
    Gioannini, T. L., Fan, L.-Q., Hyde, L., Ofri, D., Yao, Y.-H., Hiller, J. M., and Simon, E. J. 1993. Reconstitution of a purified mu-opioid binding protein in liposomes: Selective, high affinity, GTPγS-sensitive mu-opioid agonist binding is restored. Biochem. Biophys. Res. Comm. 194:901–908.Google Scholar
  19. 19.
    Lundblad, R. L. 1995. The modification of cysteine. Pages 63–89, in Techniques in Protein Modification. CRC Press, Boca Raton, FI.Google Scholar
  20. 20.
    Ofri, D., Ritter, A. M., Liu, Y., Gioannini, T. L., Hiller, J. M., and Simon, E. J. 1992. Characterization of CHAPS-solubilized opioid receptors: Reconstitution and uncoupling of guanine nucleotide-sensitive agonist binding. J. Neurochem. 58:628–635.Google Scholar
  21. 21.
    Shahrestanifar, M. S. and Howells, R. D. 1996. Sensitivity of opioid receptor binding to N-substituted maleimides and methanethiosulfonate derivatives. Neurochem. Res. 21:1295–1299.Google Scholar
  22. 22.
    Deng, H. B. and Weng, J. B. 1996. Cysteine residues in transmembrane domains of mu opiate receptor are involved in receptor binding. Society for Neuroscience 22:1766 (Abs).Google Scholar
  23. 23.
    Javitch, J. A., Li, X., Kaback, J. and Karlin, A. 1994. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91:10355–10359.Google Scholar
  24. 24.
    Stauffer, D. A., and Karlin, A. 1994 The electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochem. 33, 6840–6849.Google Scholar
  25. 25.
    Akabas, M. H. Stauffer, D. A., Xu, M and Karlin, A. 1992. Acetylcholine receptor channel structure probed in cyteine-substitution mutants. Science 258:307–310.Google Scholar
  26. 26.
    Xu, M. and Akabas, M. H. 1993. Amino acids lining the channel of the γ-aminobutyric acid type A receptor identified by cysteine substitution. J. Biol. Chem. 268:21505–21508.Google Scholar
  27. 27.
    Akabas, M. H., Kaufmann, C., Cook, T. A., and Archdeacon, P. 1994. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269:14865–14868.Google Scholar
  28. 28.
    Shahrestanifar, M., Wang, W. W. and Howells, R. D. 1996. Studies on inhibition of μ and δ opioid receptor binding by dithiothreitol and N-ethylmaleimide. J. Biol. Chem. 271:5505–5512.Google Scholar
  29. 29.
    Giabelet, G., Capeyrou, R., Dietrich, G., and Emorine, L. J. 1997. Identification in the μ-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents. FEBS Lett. 408:135–140.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Theresa L. Gioannini
    • 1
  • Irma Onoprishvili
    • 2
  • Jacob M. Hiller
    • 2
  • Eric J. Simon
    • 2
  1. 1.Natural Sciences Dept, Baruch CollegeCity University of New YorkNew York
  2. 2.Dept. of PsychiatryNew York University Medical CenterNew York

Personalised recommendations