Advertisement

Journal of Biomolecular NMR

, Volume 24, Issue 2, pp 133–142 | Cite as

Observation of H-bond mediated 3hJH2H3coupling constants across Watson–Crick AU base pairs in RNA

  • Burkhard Luy
  • Uwe Richter
  • Eric S. DeJong
  • Ole W. Sørensen
  • John P. MarinoEmail author
Article

Abstract

3hJH2H3trans-hydrogen bond scalar coupling constants have been observed for the first time in Watson-Crick AU base pairs in uniformly 15N-labeled RNA oligonucleotides using a new 2hJNN-HNN-E. COSY experiment. The experiment utilizes adenosine H2 (AH2) for original polarization and detection, while employing 2hJNNcouplings for coherence transfer across the hydrogen bonds (H-bonds). The H3 protons of uracil bases are unperturbed throughout the experiment so that these protons appear as passive spins in E. COSY patterns. 3hJH2H3coupling constants can therefore be accurately measured in the acquisition dimension from the displacement of the E. COSY multiplet components, which are separated by the relatively large 1JH3N3coupling constants in the indirect dimension of the two-dimensional experiment. The 3hJH2H3scalar coupling constants determined for AU base pairs in the two RNA hairpins examined here have been found to be positive and range in magnitude up to 1.8 Hz. Using a molecular fragment representation of an AU base pair, density functional theory/finite field perturbation theory (DFT/FPT) methods have been applied to attempt to predict the relative contributions of H-bond length and angular geometry to the magnitude of 3hJH2H3coupling constants. Although the DFT/FPT calculations did not reproduce the full range of magnitude observed experimentally for the 3hJH2H3coupling constants, the calculations do predict the correct sign and general trends in variation in size of these coupling constants. The calculations suggest that the magnitude of the coupling constants depends largely on H-bond length, but can also vary with differences in base pair geometry. The dependency of the 3hJH2H3coupling constant on H-bond strength and geometry makes it a new probe for defining base pairs in NMR studies of nucleic acids.

3hJHHcoupling constant E. COSY hydrogen bond RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, W.D. and Oldfield, E. (2000) J. Am. Chem. Soc., 122, 12835–12841.Google Scholar
  2. Barfield, M. (2002) J. Am. Chem. Soc., 124, 4158–4168.Google Scholar
  3. Barfield, M., Dingley, A.J., Feigon, J. and Grzesiek, S. (2001) J. Am. Chem. Soc., 123, 4014–4022.Google Scholar
  4. Batey, R.T., Inada, M., Kujawinski, E., Puglisi, J.D. and Williamson, J.R. (1992) Nucl. Acids Res., 20, 4515–4523.Google Scholar
  5. Benedict, H., Shenderovich, I.G., Malkina, O.L., Malkin, V.G., Denisov, G.S., Golubev, N.S. and Limbach, H.H. (2000) J. Am. Chem. Soc., 122, 1979–1988.Google Scholar
  6. Bryce, D.L. and Wasylishen, R.E. (2001) J. Biomol. NMR, 19, 371–375.Google Scholar
  7. Cordier, F. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 1601–1602.Google Scholar
  8. Cordier, F., Rogowski, M., Grzesiek, S. and Bax, A. (1999) J. Magn. Reson., 140, 510–512.Google Scholar
  9. Cornilescu, G., Hu, J.S. and Bax, A. (1999a) J. Am. Chem. Soc., 121, 2949–2950.Google Scholar
  10. Cornilescu, G., Ramirez, B.E., Frank, M.K., Clore, G.M., Gronenborn, A.M. and Bax, A. (1999b) J. Am. Chem. Soc., 121, 6275–6279.Google Scholar
  11. Czernek, J. and Bruschweiler, R. (2001) J. Am. Chem. Soc., 123, 11079–11080.Google Scholar
  12. Czernek, J., Fiala, R. and Sklenar, V. (2000) J. Magn. Reson., 145, 142–146.Google Scholar
  13. Del Bene, J.E. and Bartlett, R.J. (2000) J. Am. Chem. Soc., 122, 10480–10481.Google Scholar
  14. Del Bene, J.E. and Jordan, M.J.T. (2001) J. Mol. Struct. Theochem., 573, 11–23.Google Scholar
  15. Del Bene, J.E., Perera, S.A. and Bartlett, R.J. (2001) Magn. Reson. Chem., 39, S109–S114.Google Scholar
  16. Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293–8297.Google Scholar
  17. Dingley, A.J., Cordier, F. and Grzesiek, S. (2001) Conc. Magn. Reson., 13, 103–127.Google Scholar
  18. Dingley, A.J., Masse, J.E., Peterson, R.D., Barfield, M., Feigon, J. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 6019–6027.Google Scholar
  19. Dingley, A.J., Masse, J.E., Feigon, J. and Grzesiek, S. (2000) J. Biomol. NMR, 16, 279–289.Google Scholar
  20. Dunger, A., Limbach, H.H. and Weisz, K. (2000) J. Am. Chem. Soc., 122, 10109–10114.Google Scholar
  21. Emsley, L. and Bodenhausen, G. (1989) J. Magn. Reson., 82, 211–221.Google Scholar
  22. Geertsen, J., Odderschede, J., Scuseria, G.J. (1987) Chem. Phys., 87, 2138.Google Scholar
  23. Gemmecker, G. (2000) Angew. Chem., 112, 1276–1279; Int. Ed., 39, 1224–1226.Google Scholar
  24. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1985) J. Am. Chem. Soc., 107, 6394–6396.Google Scholar
  25. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986) J. Chem. Phys., 85, 6837–6852.Google Scholar
  26. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1987) J. Magn. Reson., 75, 474–492.Google Scholar
  27. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 627–638.Google Scholar
  28. Grzesiek, S., Cordier, F. and Dingley, A.J. (2001) Meth. Enzymol., 338, 111–133.Google Scholar
  29. Guerra, C.F., Bickelhaupt, F.M., Snijders, J.G. and Baerends, E.J. (2000) J. Am. Chem. Soc., 122, 4117–4128.Google Scholar
  30. Hennig, M. and Geierstanger, B.H. (1999) J. Am. Chem. Soc., 121, 5123–5126.Google Scholar
  31. Hennig, M. and Williamson, J.R. (2000) Nucl. Acids Res., 28, 1585–1593.Google Scholar
  32. Liu, A.Z., Hu, W.D., Majumdar, A., Rosen, M.K. and Patel, D.J. (2000) J. Biomol. NMR, 17, 305–310.Google Scholar
  33. Liu, A.Z., Majumdar, A., Hu, W.D., Kettani, A., Skripkin, E. and Patel, D.J. (2000) J. Am. Chem. Soc., 122, 3206–3210.Google Scholar
  34. Lohr, F., Mayhew, S.G. and Rüterjans, H. (2000) J. Am. Chem. Soc., 122, 9289–9295.Google Scholar
  35. Luy, B. and Marino, J.P. (2000) J. Am. Chem. Soc., 122, 8095–8096.Google Scholar
  36. Majumdar, A. (2001) Magn. Reson. Chem., 39, S166–S170.Google Scholar
  37. Majumdar, A. and Patel, D.J. (2002) Acc. Chem. Res., 35, 1–11.Google Scholar
  38. Majumdar, A., Gosser, Y. and Patel, D.J. (2001a) J. Biomol. NMR, 21, 289–306.Google Scholar
  39. Majumdar, A., Kettani, A., Skripkin, E. and Patel, D.J. (2001b) J. Biomol. NMR, 19, 103–113.Google Scholar
  40. Majumdar, A., Kettani, A. and Skripkin, E. (1999a) J. Biomol. NMR, 14, 67–70.Google Scholar
  41. Majumdar, A., Kettani, A., Skripkin, E. and Patel, D. (1999b) J. Biomol. NMR, 15, 207–211.Google Scholar
  42. Malkin, V.G., Malkina, O.L. and Salahub, V.G. (1994) Chem Phys. Lett., 221, 91–99.Google Scholar
  43. Malkina, O.L., Salahub, D.R. and Malkin, V.G. (1996) J. Chem. Phys., 105, 8793–8800.Google Scholar
  44. Marion, D., Ikura, R., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393.Google Scholar
  45. Meissner, A. and Sørensen, O.W. (2000a) J. Magn. Reson., 143, 387–390.Google Scholar
  46. Meissner, A. and Sørensen, O.W. (2000b) J. Magn. Reson., 143, 431–434.Google Scholar
  47. Milligan, J.F. and Uhlenbeck, O.C. (1989) Meth. Enzymol., 180, 51.Google Scholar
  48. Mishima, M., Hatanaka, M., Yokoyama, S., Ikegami, T., Wälchli, M., Ito, Y. and Shirakawa, M. (2000) J. Am. Chem. Soc., 122, 5883–5884.Google Scholar
  49. Nikonowicz, E.P., Sirr, A., Legault, P., Jucker, F.M., Baer, L.M. and Pardi, A. (1992) Nucl. Acids Res., 20, 4507–4513.Google Scholar
  50. Onak, T., Jaballas, J. and Barfield, M. (1999) J. Am. Chem. Soc., 121, 2850–2856.Google Scholar
  51. Paillart, J.C., Marquet, R., Skripkin, E., Ehresmann, C. and Ehresmann, B. (1996) Biochimie, 78, 639–653.Google Scholar
  52. Pecul, M., Leszczynski, J. and Sadlej, J. (2000) J. Phys. Chem. A, 104, 8105–8113.Google Scholar
  53. Pervushin, K., Fernandez, C., Riek, R., Ono, A., Kainosho, M. and Wüthrich, K. (2000) J. Biomol. NMR, 16, 39–46.Google Scholar
  54. Pervushin, K., Ono, A., Fernandez, C., Szyperski, T., Kainosho, M. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 14147–14151.Google Scholar
  55. Pietrzak, M., Wehling, J., Limbach, H.H., Golubev, N.S., Lopez, C., Claramunt, R.M. and Elguero, J. (2001) J. Am. Chem. Soc., 123, 4338–4339.Google Scholar
  56. Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661–665.Google Scholar
  57. Pople, J.A., McIver, Jr. J.W. and Ostlund, N.S. (1968) J. Chem. Phys. 49, 2960–2964, 2965–2970.Google Scholar
  58. Schaftenaar, G. and Noordik, J.H. (2000) J. Comput.-Aided Mol. Des., 14, 123–134.Google Scholar
  59. Scheurer, C. and Bruschweiler, R. (1999) J. Am. Chem. Soc., 121, 8661–8662.Google Scholar
  60. Shaka, A.J., Barker, P. and Freeman, R.J. (1985) J. Magn. Reson., 64, 547–552.Google Scholar
  61. Turner, D.H., Sugimoto, N. and Freier, S.M. (1988) Annu. Rev. Biophys. Chem., 17, 167–192.Google Scholar
  62. Wagner, E.G.H. and Simons, R.W. (1994) Annu. Rev. Microbiol., 48, 712–742.Google Scholar
  63. Wang, Y.X., Jacob, J., Cordier, F., Wingfield, P., Stahl, S.J., Lee-Huang, S., Torchia, D., Grzesiek, S. and Bax, A. (1999) J. Biomol. NMR, 14, 181–184.Google Scholar
  64. Wilkens, S.J., Westler, W.M., Weinhold, F. and Markley, J.L. (2002) J. Am. Chem. Soc., 124, 1190–1191.Google Scholar
  65. Wohnert, J., Dingley, A.J., Stoldt, M., Gorlach, M., Grzesiek, S. and Brown, L.R. (1999) Nucl. Acids Res., 27, 3104–3110.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Burkhard Luy
    • 1
  • Uwe Richter
    • 1
    • 2
  • Eric S. DeJong
    • 1
  • Ole W. Sørensen
    • 3
  • John P. Marino
    • 1
    Email author
  1. 1.Center for Advanced Research in BiotechnologyUniversity of Maryland Biotechnology Institute and the National Institute of Standards and TechnologyRockvilleU.S.A
  2. 2.Forschungsinstitut für Molekulare PharmakologieBerlinGermany
  3. 3.Department of ChemistryCarlsberg LaboratoryValbyDenmark

Personalised recommendations