Experimental & Applied Acarology

, Volume 26, Issue 1–2, pp 27–42 | Cite as

Interactions in a tritrophic acarine predator-prey metapopulation system III: Effects of Tetranychus urticae (Acari: Tetranychidae) on host plant condition

  • Gösta Nachman
  • Rostislav Zemek


Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually, using the Leaf Damage Index (LDI) defined by, and a mathematical relationship between the visual measurements and the amount of chlorophyll/cm2 was fitted to data. The relationship may serve as a short-cut to estimate overall plant injury, expressed as the relative loss of chlorophyll/cm2 leaf area caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth incorporating information about plant age and D predicts that plant area has a maximum when plant age is about 60 days, and that plant area decreases exponentially with an increase in D.

Beans Chlorophyll Injury assessment Leaf damage index LDI Plant condition Tetranychus urticae Two-spotted spider mites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15.PubMedCrossRefGoogle Scholar
  2. Bernstein C. 1984. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia (Berl.) 61: 134-142.CrossRefGoogle Scholar
  3. Brito R.M., Stern V.M. and Sances F.V. 1986. Physiological response of cotton plants to feeding of three Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entomol. 79: 1217-1220.Google Scholar
  4. Candolfi M.P., Keller M. and Boller E.F. 1991. Mite-load function improves precision of feeding damage estimation in Tetranychus urticae. Entomol. Exp. Appl. 58: 289-293.CrossRefGoogle Scholar
  5. DeAngelis J., Berry R.E. and Krantz G.W. 1983. Photosynthesis, leaf conductance and leaf chlorophyll content in spider mite (Acari: Tetranychidae)-injured peppermint leaves. Environ. Entomol. 12: 345-348.Google Scholar
  6. English-Loeb G.M. 1990. Plant drought stress and outbreaks of spider mites: A field test. Ecology 71: 1401-1411.CrossRefGoogle Scholar
  7. Gutierrez A.P., Mills N.J., Schreiber S.J. and Ellis C.K. 1994. A physiologically based tritrophic perspective on bottom-up-top-down regulation of populations. Ecology 75: 2227-2242.CrossRefGoogle Scholar
  8. Hoyt S.C., Tanigoshi L.K. and Browne R.W. 1979. Economic injury level studies in relation to mites on apple. Recent Advances in Acarology 1: 3-12.Google Scholar
  9. Hussey N.W. and Parr W.J. 1963a. Dispersal of the glasshouse red spider mites Tetranychus urticae Koch (Acarina, Tetranychidae). Entomol. Exp. Appl. 6: 207-214.CrossRefGoogle Scholar
  10. Hussey N.W. and Parr W.J. 1963b. The effect of glasshouse red spider mite (Tetranychus urticae Koch) on the yield of cucumbers. J. Hort. Sci. 38: 255-263.Google Scholar
  11. Iatrou G., Cook C.M., Stamou G. and Lanaras T. 1995. Chlorophyll fluorescence and leaf chlorophyll of bean leaves injured by spider mites (Acari: Tetranychidae). Exp. Appl. Acarol 19: 581-591.CrossRefGoogle Scholar
  12. Johnson D.L. 1983. On the relationship between the European red mite and apple leaf chlorophyll. J. Entomol. Soc. Brit. Columbia 80: 42-45.Google Scholar
  13. Laing J.E., Calvert D.L. and Huffaker C.B. 1972. Preliminary studies of effects of Tetranychus pacificus on yield and quality of grapes in the San Joaquin Valley, California. Environ. Entomol. 1: 658-663.Google Scholar
  14. Li J. and Margolies D.C. 1993. Effects of mite age, mite density, and host quality on aerial dispersal behavior in the twospotted mite. Entomol. Exp. Appl. 68: 79-86.CrossRefGoogle Scholar
  15. Liesering R. 1960. Beitrag zum phytopathologischen Wirkungsmechanismus von Tetranychus urticae Koch (Tetranychidae, Acari). Zeitschrift für Pflanzenkrankheiten 67: 524-542.Google Scholar
  16. Mitchell R. 1973. Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology 54: 1349-1355.CrossRefGoogle Scholar
  17. Nachman G. and Zemek R. 2001. Interactions in a tritrophic acarine predator-prey metapopulation system IV: Effects of host plant condition on Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol.Google Scholar
  18. Nihoul P., Van Impe G. and Hance T. 1991. Characterizing indices of damage to tomato by the twospotted spider mite, Tetranychus urticae Koch (Acari; Tetranychidae) to achieve biological control. J. Hort. Sci. 66: 643-648.Google Scholar
  19. Sadras V.O. and Wilson L.J. 1996. Effects of timing and intensity of spider mite infestation on the oil yield of cotton crops. Austral. J. Exp. Agricult. 36: 577-580.CrossRefGoogle Scholar
  20. Sances F.V., Wyman J.A. and Ting I.P. 1979. Physiological responses to spider mite infestation on strawberries. Environ. Entomol. 8: 711-714.Google Scholar
  21. SAS Inst. 1994. SAS/STAT User's Guide. 4th edn. Vol. 1 and 2. SAS Institute Inc., Cary, NC.Google Scholar
  22. Skovgård H., Tomkiewicz J., Nachman G. and Münster-Swendsen M. 1993. The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta in a seasonally dry area in Kenya. Exp. Appl. Acarol. 17: 41-58.Google Scholar
  23. Tomczyk A. and Kropczynska D. 1985. Effects on the host plant. In: Helle W. and Sabelis M.W. (eds), Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, pp. 317-329.Google Scholar
  24. Tomkiewicz J., Skovgård H., Nachman G. and Münster-Swendsen M. 1993. A rapid and non-destructive method to assess leaf injury caused by the cassava green mite, Mononychellus tanajoa (Bondar)(Acarina: Tetranychidae). Exp. Appl. Acarol 17: 29-40.Google Scholar
  25. Tulisalo U. 1970. The two-spotted spider mite (Tetranychus urticae Koch) on greenhouse cucumber. Ann. Ent. Fenn. 36: 110-114.Google Scholar
  26. Watson T.F. 1964. Influence of host plant condition on population increase of Tetranychus telarius (Linnaeus) (Acarina: Tetranychidae). Hilgardia 35: 273-322.Google Scholar
  27. Wilson L.J. 1993. Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. J. Econ. Entomol. 86: 566-585.Google Scholar
  28. Wilson L.J. 1994. Plant-quality effect on life-history parameters of the twospotted spider mite (Acari: Tetranychidae) on cotton. J. Econ. Entomol. 87: 1665-1673.Google Scholar
  29. Wrensch D.L. and Young S.S.Y. 1974. Effects of quality of resource and fertilization status on some fitness traits in the two-spotted spider mite, Tetranychus urticae Koch. Oecologia (Berl.) 18: 259-267.CrossRefGoogle Scholar
  30. Youngman R.R., Jones V.P., Welter S.C. and Barnes M.M. 1986. Comparison of feeding damage caused by four tetranychid mite species on gas-exchange rates of almond leaves. Environ. Entomol. 15: 190-193.Google Scholar
  31. Zemek R. and Nachman G. 1998. Interactions in a tritrophic acarine predator-prey metapopulation system: effects of Tetranychus urticae on the dispersal rates of Phytoseiulus persimilis (Acarina: Tetranychidae, Phytoseiidae). Exp. Appl. Acarol. 22: 259-278.CrossRefGoogle Scholar
  32. Zemek R. and Nachman G. 1999. Interactions in a tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 23: 21-40.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gösta Nachman
    • 1
  • Rostislav Zemek
    • 2
  1. 1.Zoological Institute, Department of Population EcologyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Institute of Entomology, Branišovská 31České BudějoviceCzech Republic

Personalised recommendations