Journal of Biomolecular NMR

, Volume 24, Issue 2, pp 103–112 | Cite as

NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution

  • August Andersson
  • Lena MälerEmail author


The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13Cα-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered α-helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical β-turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.

13C relaxation bicelle dynamics motilin NMR solution structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, P., Jarvet, J., Ehrenberg, A. and Gräslund, A. (1995) J. Biomol. NMR, 5, 133–146.Google Scholar
  2. Backlund, B.-M., Wikander, G., Peeters, T.L. and Gräslund, A. (1994) Biochim. Biophys. Acta, 1190, 337–344.Google Scholar
  3. Boulanger, Y., Khiat, A., Chen, Y., Gagnon, D., Poitras, P. and St-Pierre, S. (1995) Int. J. Pept. Protein Res., 46, 527–534.Google Scholar
  4. Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.Google Scholar
  5. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Academic Press, San Diego.Google Scholar
  6. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. and Bax, A. (2002) J. Am. Chem. Soc., 124, 2450–2451.Google Scholar
  7. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.Google Scholar
  8. Dayie, K.T. and Wagner, G. (1994) J. Magn. Reson. Ser., A111, 121–126.Google Scholar
  9. Edmondson, S., Khan, N., Shriver, J., Zdunek, J. and Gräslund, A. (1991) Biochemistry, 30, 11271–11279.Google Scholar
  10. Gaemers, S. and Bax, A. (2001) J. Am. Chem. Soc., 123, 12343–12352.Google Scholar
  11. Gippert, G. (1995) New Computational Methods for 3DNMR Data Analysis and Protein Structure Determination in High-Dimensional Internal Coordinate Space, PhD Thesis. The Scripps Institute, La Jolla.Google Scholar
  12. Glover, K.J., Whiles, J.A., Wu, G., Yu, N.-J., Deems, R., Struppe, J.O., Stark, R.E., Komives, E.A. and Vold, R.R. (2001) Biophys. J., 81, 2163–2171.Google Scholar
  13. Güntert, P. and Wüthrich, K. (1991) J.Biomol. NMR, 1, 447–456.Google Scholar
  14. Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.Google Scholar
  15. Itoh, Z. (1997) Peptides, 18, 593–608.Google Scholar
  16. Jarvet, J., Zdunek, J., Damberg, P. and Gräslund, A. (1997)Biochemistry, 36, 8153–8163.Google Scholar
  17. Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys.,71, 4546–4553.Google Scholar
  18. Khan, N., Gräslund, A., Ehrenberg, A. and Shriver, J. (1990) Biochemistry, 29, 5743–5751.Google Scholar
  19. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283–291.Google Scholar
  20. Lindberg, M. and Gräslund, A. (2001) FEBS Lett., 497, 39–44.Google Scholar
  21. Lipari, G. and Szabo, A. (1982a) J. Am.Chem. Soc., 104, 4546–4559.Google Scholar
  22. Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.Google Scholar
  23. Luchette, P.A., Vetman, T.N., Prosser, R.S., Hancock, R.E.W., Nieh, M.-P., Glinka, C.J., Krueger, S. and Katsaras, J. (2001) Biochim. Biophys. Acta, 1513, 83–94.Google Scholar
  24. Magzoub, M., Kilk, K., Eriksson, L.E.G. and Gräslund, A. (2001)Biochim. Biophys. Acta, 1512, 77–89.Google Scholar
  25. Mäler, L., Potts, B.C.M. and Chazin, W.J. (1999) J. Biomol. NMR,13, 233–247.Google Scholar
  26. Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol., 246, 144–163.Google Scholar
  27. Neuhaus, D. and Williamson, M.P. (1989) The Nuclear Overhauser Effect in Structure and Conformational Analysis, VCH, New York, NY.Google Scholar
  28. Palmer, A.G., Kroenke, C.D. and Loria, P.J. (2001) Meth. Enzymol., 339, 204–238.Google Scholar
  29. Palmer, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.Google Scholar
  30. Papavoine, C.H.M., Remerowski, M.L., Horstink, L.M., Konings, R.N.H., Hilbers, C.W. and van de Ven, F.J.M. (1997) Biochemistry, 36, 4015–4026.Google Scholar
  31. Pearlmann, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1995) AMBER 4.1. University of California, San Fransisco, CA.Google Scholar
  32. Sanders, C.R. and Landis, G.C. (1995) Biochemistry, 34, 4030–4040.Google Scholar
  33. Sanders, C.R. and Prosser, R.S.(1998) Structure, 6, 1227–1234.Google Scholar
  34. Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64,547–552.Google Scholar
  35. Smith, J.A., Gomez-Paloma, L., Case, D.A. and Chazin, W.J. (1996) Magn. Reson. Chem., 34, 147–155.Google Scholar
  36. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  37. Struppe, J. and Vold, R.R. (1998) J. Magn. Reson., 135, 541–546.Google Scholar
  38. Struppe, J., Whiles, J.A. and Vold, R.R. (2000) Biophys. J.,78, 281–289.Google Scholar
  39. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  40. Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329–335.Google Scholar
  41. Wei, Y., Lee, D.-K. and Ramamoorthy, A. (2001) J. Am.Chem. Soc., 123, 6118–6126.Google Scholar
  42. Whiles, J.A., Brasseur, R., Glover, K.J., Melacini, G., Komives, E.A. and Vold, R.R.(2001) Biophys. J., 80, 280–293.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Biochemistry and Biophysics, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations