Journal of Mathematical Sciences

, Volume 113, Issue 2, pp 350–359

An Example of a Spatially Nonflat von Neumann Algebra

  • M. E. Polyakov
Article
  • 13 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    F. Greenleaf, Invariant Means on Topological Groups and Their Applications, New York University (1969).Google Scholar
  2. 2.
    Yu. O. Golovin, “Homological properties of Hilbert modules on nest operator algebras and over their generalization, ”Mat. Zametki, 41, No. 6, 769–775(1987).Google Scholar
  3. 3.
    Yu. O. Golovin, “The spatial flatness and injectivity for an indecomposable CSL-algebra, ”Mat. Zametki, 63, No. 1, 9–20(1998).Google Scholar
  4. 4.
    A. Ya. Helemskii, “A description of spatially projective von Neumann algebras, ”J. Oper. Theory, 32, 391–398(1994).Google Scholar
  5. 5.
    A. Ya. Helemskii, “A homological characterization of type I factors, ”Dokl. Ross. Akad. Nauk, 344, No. 4 (1995).Google Scholar
  6. 6.
    A. Ya. Helemskii, “Projective homological classification of C *-algebras, ”Commun. Algebra, 26, No. 3, 977–996(1998).Google Scholar
  7. 7.
    A. Ya. Helemskii, “31 problems of the homology of the algebras of analysis, ”In: Lect. Notes Math., 1513, 54–78.Google Scholar
  8. 8.
    A. Ya. Helemskii, “The spatial flatness and injectiveness of Connes operator algebras, ”Extr. Math., 9, No. 1, 75–81(1994).Google Scholar
  9. 9.
    A. Ya. Helemskii, “The homology in algebras of analysis, ”In: Handbook of Algebra, Vol. II, Elsvir (2000).Google Scholar
  10. 10.
    G. J. Murphy, C *-Algebras and Operator Theory, Academic Press, Cork (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. E. Polyakov

There are no affiliations available

Personalised recommendations