Geometriae Dedicata

, Volume 94, Issue 1, pp 33–43 | Cite as

Subgroups of Free Groups: a Contribution to the Hanna Neumann Conjecture

  • J. Meakin
  • P. Weil
Article

Abstract

We prove that the strengthened Hanna Neumann conjecture, on the rank of the inter-section of finitely generated subgroups of a free group, holds for a large class of groups characterized by geometric properties. One particular case of our result implies that the conjecture holds for all positively finitely generated subgroups of the free group F(A) (over the basis A), that is, for subgroups which admit a finite set of generators taken in the free monoid over A.

free groups finitely generated subgroups basic path admissible graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birget, J.-C., Margolis, S., Meakin, J. and Weil, P.: PSPACE-completeness of certain algorithmic problems on the subgroups of free groups, Theoret. Comput. Sci. 242 (2000), 247–281.Google Scholar
  2. 2.
    Burns, R. G.: On the intersection of finitely generated subgroups of a free group, Math. Z. 119 (1971), 121–130.Google Scholar
  3. 3.
    Dicks, W.: Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture, Invent. Math. 117 (1994), 373–389.Google Scholar
  4. 4.
    Dicks, W. and Formanek, E.: The rank three case of the Hanna Neumann conjecture, J. Group Theory 4 (2) (2001), 113–151.Google Scholar
  5. 5.
    Gersten, S. M.: Intersections of finitely generated subgroups of free groups and resolutions of graphs, Invent. Math. 71 (1983), 567–591.Google Scholar
  6. 6.
    Héam, P.-C.: Some topological properties of rational sets, J. Autom. Lang. Comput. 6 (2001), 275–290.Google Scholar
  7. 7.
    Howson, A. G.: On the intersection of finitely generated free groups, J. London Math. Soc. 29 (1954), 428–434.Google Scholar
  8. 8.
    Imrich, W.: On finitely generated subgroups of free groups, Arch. Math. 28 (1977), 21–24.Google Scholar
  9. 9.
    Imrich, W.: Subgroup theorems and graphs, In: C. H. C. Little (ed.), Combinatorial Mathematics, Lecture Notes in Math. 622, Springer, New York, 1977, pp. 1–27.Google Scholar
  10. 10.
    Khan, B.: Positively generated subgroups of free groups and the Hanna Neumann Conjecture, In: R. Gilman et al. (eds), Proc. Special Sessions on Combinatorial Group Theory and Computational Group Theory, Contemp. Math., Amer. Math. Soc., Providence, to appear.Google Scholar
  11. 11.
    Margolis, S. and Meakin, J.: Free inverse monoids and graph immersions, Intern. J. Algebra Comput. 3 (1993), 79–100.Google Scholar
  12. 12.
    Meakin, J.: An invitation to inverse semigroups, in K. P. Shum and P. C. Yuen (eds), Proc. Hong Kong Conf. on Ordered Structures and Algebra of Computer Languages, World Scientific, Singapore, 1993, pp. 91–115.Google Scholar
  13. 13.
    Neumann, H.: On intersections of finitely generated subgroups of free groups, Publ. Math. Debrecen 4 (1956), 186–189.Google Scholar
  14. 14.
    Neumann, H.: On intersections of finitely generated subgroups of free groups. Addendum, Publ. Math. Debrecen 5 (1958), 128.Google Scholar
  15. 15.
    Neumann, W. D.: On intersections of finitely generated subgroups of free groups, in L. G. Kovács (ed.), Groups — Canberra 1989, Lecture Notes in Math. 1456, Springer, New York, 1990, pp. 161–170.Google Scholar
  16. 16.
    Nickolas, P.: Intersections of finitely generated free groups, Bull. Austr. Math. Soc. 31 (1985), 339–348.Google Scholar
  17. 17.
    Servatius, B.: A short proof of a theorem of Burns, Math. Z. 184 (1983), 133–137.Google Scholar
  18. 18.
    Stallings, J. R.: Topology of finite graphs, Invent. Math. 71 (1983), 551–565.Google Scholar
  19. 19.
    Steinberg, B.: Fundamental groups, inverse Schútzenberger automata, and monoid presentations, Comm. Algebra 28 (2000), 5235–5253.Google Scholar
  20. 20.
    Tardos, G.: On the intersection of subgroups of a free group, Invent. Math. 108 (1992), 29–36.Google Scholar
  21. 21.
    Tardos, G.: Towards the Hanna Neumann conjecture using Dicks' method, Invent. Math. 123 (1996), 95–104.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Meakin
    • 1
  • P. Weil
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of NebraskaLincolnU.S.A.
  2. 2.LaBRIUniversité Bordeaux-I and CNRSTalence CedexFrance

Personalised recommendations