Journal of Chemical Ecology

, Volume 25, Issue 4, pp 805–816 | Cite as

Two Pheromones of Coniferophagous Bark Beetles Found in the Bark of Nonhost Angiosperms

  • Dezene P. W. Huber
  • Regine Gries
  • John H. Borden
  • Harold D. PierceJr.


Volatiles from fresh bark of black cottonwood, Populus trichocarpa; trembling aspen, P. tremuloides; paper birch, Betula papyrifera; bigleaf maple, Acer macrophyllum; red alder, Alnus rubra; and Sitka alder, Alnus viridis, were collected on Porapak Q and subjected to coupled gas chromatographic–electroantennographic detection analyses by utilizing the antennae of several scolytid beetles (Dendroctonus pseudotsugae, D. rufipennis, D. ponderosae, Ips pini, and Dryocoetes confusus). Among the antennally active volatiles identified by coupled gas chromatographic-mass spectroscopic analysis were frontalin, 1,5-dimethyl-6,8-dioxabicyclo[3.2.1]-octane, in the two Alnus species and conophthorin, (E)-7-methyl-1,6-diox-aspiro[4.5]decane, in the other four species. Field trapping experiments demonstrated that conophthorin had a significant disruptant effect on the response to a pheromone-host kairomone blend by both Dendroctonus pseudotsugae and D. ponderosae. Our results, and the recent identification of other scolytid pheromones in various tree species, pose major questions regarding the evolution and ecological roles of these semiochemicals, including the possibility of Batesian mimicry by the beetles. They also suggest a need for comparative studies on the biosynthetic pathways for these compounds.

Semiochemicals pheromones nonhost volatiles frontalin conophthorin 1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane (E)-7-methyl-1,6-dioxaspiro[4.5]decane Coleoptera Scolytidae Batesian mimicry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, J. R., Avery, J. W., Lee, C-J. Graf, J. C., Harrison, D. J., and Bin, F. 1996. Semiochemistry of cabbage bugs (Heteroptera: Pentatomidae: Eurydema and Murgantia). J. Entomol. Sci. 31:172–182.Google Scholar
  2. Arn, H., TÓth, M., and Preisner, E. 1992. List of Sex Pheromones of Lepidoptera and Related Attractants, 2nd ed. International Organization for Biological Control, Montfavet, France.Google Scholar
  3. Atkins, M. D. 1966. Behavioural variation among scolytids in relation to their habitat. Can. Entomol. 98:285–288.Google Scholar
  4. Bakke, A., FrØyen, L. 1977. Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften 64:98–99.Google Scholar
  5. Bates, H. W. 1862. XXXII. Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans. Linn. Soc. London 23:495–566.Google Scholar
  6. Bell, W. J. 1990. Searching Behaviour: The Behavioural Ecology of Finding Resources. Chapman and Hall, New York.Google Scholar
  7. Birgersson, G. 1989. Host tree resistance influencing pheromone production in Ips typographus (Coleoptera: Scolytidae). Holarct. Ecol. 12:451–456.Google Scholar
  8. Birgersson, G., Debarr, G. L., De Groot, P., Dalusky, M. J., Pierce, H. D., Jr., Borden, J. H., Meyer, H., Francke, W., Espelie, K. E., and Berisford, C. W. 1995. Pheromones in the white pine cone beetle, Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). J. Chem. Ecol. 21:143–167.Google Scholar
  9. Blum, M. S. 1970. The chemical basis of insect sociality, pp. 61–94, in M. Beroza (ed.). Chemicals Controlling Insect Behavior. Academic Press, New York.Google Scholar
  10. Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.PubMedGoogle Scholar
  11. Borden, J. H. 1982. Aggregation pheromones, pp. 74–139, in J. B. Mitton and K. B. Sturgeon (eds.). Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin.Google Scholar
  12. Borden, J. H. 1985. Aggregation pheromones, pp. 257–285, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9. Pergamon Press, New York.Google Scholar
  13. Borden, J. H., Ryker, L. C., Chong, L. J., Pierce, H. D., Jr., Johnston, B. D., and Oehlschlager, A. C. 1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Can. J. For. Res. 17:118–128.Google Scholar
  14. Borden, J. H., Huber, D. P. W., Pierce, H. D., Jr., Gries, G., Gries, R., Chong, L. J., and Wilson, I. M. Nonhost volatiles as repellents for conifer-infesting bark beetles. US Patent application submitted December 8, 1997.Google Scholar
  15. Borden, J. H., Wilson, I. M., Gries, R., Chong, L. J., Pierce, H. D., Jr., and Gries, G. 1998. Volatiles from the bark of trembling aspen, Populus tremuloides Michx. (Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology 8:69–75.Google Scholar
  16. Byers, J. A. 1995. Host-tree chemistry affecting colonization in bark beetles, pp. 154–213, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman and Hall, New York.Google Scholar
  17. Byers, J. A., Zhang, Q., Schlyter, F., and Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften 85:557–561.Google Scholar
  18. Dahlsten, D. L. 1982. Relationship between bark beetles and their natural enemies, pp. 140–182, in J. B. Mitton and K. B. Sturgeon (eds.). Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin.Google Scholar
  19. Dallara, P. L., Seybold, S. J., Francke, W., and Wood, D. L. 1994. The chemical ecology of Pityophthorus Eichhoff (Coleoptera: Scolytidae) in central coastal California, Appendix, pp. Ixviii-Ixix, in D. H. Adams, J. E. Rios, and A. J. Storer (eds.). Annual Meeting of the California Forest Pest Council, Proceedings of the 43rd Annual Meeting. Rancho Cordova, California.Google Scholar
  20. Day, R. W., and Quinn, G. P. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 59:433–463.Google Scholar
  21. Deglow, E. K., and Borden, J. H. 1998. Green leaf volatiles disrupt and enhance response to aggregation pheromones by the ambrosia beetle, Gnathotrichus sulcatus (Leconte) (Coleoptera: Scolytidae). Can. J. For. Res. 28:1697–1705.Google Scholar
  22. Dickens, J. C., Billings, R. F., and Payne, T. L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia 48:523–524.Google Scholar
  23. Fitzpatrick, S. M., Miller, D., Weatherston, I., and McNeil, J. N. 1985. Determining pheromone content of hairpencils from individual virgin males of Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae). J. Chem. Ecol. 11:207–215.Google Scholar
  24. Francke, W., Hindorf, G., and Reith, W. 1978. Methyl-1,6-dioxaspiro[4.5]decanes as odors of Paravespula vulgaris (L.). Angew. Chem. Int. Ed. Engl. 17:862.Google Scholar
  25. Gries, G. 1995. Prospects of new semiochemicals and technologies, pp. 44–47, in S. M. Salom and K. R. Hobson (eds.). Application of Semiochemicals for Management of Bark Beetle Infestations-Proceedings of an Informal Conference. USDA For. Serv. Gen. Tech. Rep. INT-GTR-318.Google Scholar
  26. Gries, G., Nolte, R., and Sanders, W. 1989. Computer simulated host selection in Ips typographus. Entomol. Exp. Appl. 53:211–217.Google Scholar
  27. Guilford, T., Nicol, C., Rothschild, M., and Moore, B. P. 1987. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. London 31:113–128.Google Scholar
  28. Hall, D. R., Beevor, P. S, Cork, A., Nesbitt, B. F., and Vale, G. A. 1984. 1-Octen-3-ol a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Sci. Appl. 5:335–339.Google Scholar
  29. Harley, P., Fridd-Stroud, V., Greenberg, J., Guenther, A., and Vasconcellos, P. 1998. Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere. J. Geophys. Res. 103:25,479–25,486.Google Scholar
  30. Jacquin, E., Nagnan, P., and Frerot, B. 1991. Identification of hairpencil secretion from male Mamestra brassicae (L.) (Lepidoptera: Noctuidae) and electroantennogram studies. J. Chem. Ecol. 17:239–246.Google Scholar
  31. Kohnle, U., Densborn, S., KÖlsch, P., Meyer, H., and Francke, W. 1992. E-7-methyl-1,6-dioxaspiro[4.5]decane in the chemical communication of European Scolytidae and Nitidulidae (Coleoptera). J. Appl. Entomol. 114:187–192.Google Scholar
  32. Lindgren, B. S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Entomol. 115:299–302.Google Scholar
  33. Perrin, T. E., Rasmussen, L. E. L., Gunawardena, R., and Rasmussen, R. A. 1996. A method for collection, long-term storage, and bioassay of labile volatile chemosignals. J. Chem. Ecol. 22:207–221.Google Scholar
  34. Pierce, A. M., Borden, J. H., and Oehlschlager, A. C. 1981. Olfactory response to beetle-produced volatiles and host-food attractants by Oryzaephilus surinamensis and O. mercator. Can. J. Zool. 59:1980–1990.Google Scholar
  35. Pierce, A. M., Pierce, H. D., Jr., Borden, J. H., and Oehlschlager, A. C. 1989. Production dynamics of cucujolide pheromones and identification of 1-octen-3-ol as a new aggregation pheromone for Oryzaephilus surinamensis and Orysaephilus mercator (Coleoptera: Cucujidae). Environ. Entomol. 18:747–755.Google Scholar
  36. Pierce, H. D., Jr., De Groot, P., Borden, J. H., Ramaswamy, S., and Oehlschlager, A. C. 1995. Pheromones in red pine cone beetle, Conophthorus resinosae Hopkins, and its synonym, C. banksianae McPherson (Coleoptera: Scolytidae). J. Chem. Ecol. 21:169–185.Google Scholar
  37. Rasmussen, L. E. L., Lee, T. D., Roelofs, W. L., Zhang, A., and Daves, G. D., Jr. 1996. Insect pheromone in elephants. Nature 379:684.PubMedGoogle Scholar
  38. Rudinsky, J. A. 1962. Ecology of Scolytidae. Annu. Rev. Entomol. 7:327–348.Google Scholar
  39. Ryker, L. C., and Libbey, L. M. 1982. Frontalin in the male mountain pine beetle. J. Chem. Ecol. 8:1399–1409.Google Scholar
  40. SAS Institute Inc. 1988. SAS/STAT Users Guide, Release 6.03 Edition. Cary, North Carolina.Google Scholar
  41. Schlyter, F., Birgersson, G., Byers, J. A., LÖfqvist, J., and BergstrÖm, G. 1987. Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J. Chem. Ecol. 13:701–716.Google Scholar
  42. Schroeder, L. M. 1992. Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus. J. Chem. Ecol. 18:1583–1593.Google Scholar
  43. Shepherd, R. F. 1966. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) Can. Entomol. 98:507–518.Google Scholar
  44. Torto, B., Obeng-Ofori, D., Njagi, P. G. N., Hassanali, A., and Amiani, H. 1994. Aggregation pheromone system of adult gregarious desert locust Schistocerca gregaria (Forskal). J. Chem. Ecol. 20:1749–1762.Google Scholar
  45. Werner, R. A., and Holsten, E. H. 1995. Current status of research with the spruce beetle Dendroctonus rufipennis, pp. 23–29, in S. M. Salom and K. R. Hobson (eds.). Application of Semiochemicals for Management of Bark Beetle Infestations—Proceedings of an Informal Conference. USDA For. Serv. Gen. Tech. Rep. INT-GTR-318.Google Scholar
  46. Wilson, I. M., Borden, J. H., Gries, R., and Gries, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). J. Chem. Ecol. 22:1861–1875.Google Scholar
  47. Zar, J. H. 1984. Data transformations. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 236–242.Google Scholar
  48. Zuber, M. 1994. Racemate and enantiomers of ipsidenol for attracting Ips amitinus (Eichh.) (Col., Scolytidae). Anz. Schaedlingskd. Pflanz. Umweltschutz 67:92–93.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Dezene P. W. Huber
    • 1
  • Regine Gries
    • 1
  • John H. Borden
    • 1
  • Harold D. PierceJr.
    • 2
  1. 1.Centre for Environmental Biology, Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations