Advertisement

Behavior Genetics

, Volume 32, Issue 6, pp 435–443 | Cite as

Food Intake, Water Intake, and Drinking Spout Side Preference of 28 Mouse Strains

  • Alexander A. Bachmanov
  • Danielle R. Reed
  • Gary K. Beauchamp
  • Michael G. Tordoff
Article

Abstract

Male mice from 28 inbred strains (129P3/J, A/J, AKR/J, BALB/cByJ, BUB/BnJ, C3H/HeJ, C57BL/6J, C57L/J, CAST/Ei, CBA/J, CE/J, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LP/J, NOD/LtJ, NZB/BlNJ, P/J, PL/J, RBF/DnJ, RF/J, RIIIS/J, SEA/GnJ, SJL/J, SM/J, SPRET/Ei, and SWR/J) were fed chow and had access to two water bottles. Body weight, food intake, water intake, and drinking spout side preference were measured. There were large strain differences in all the measures collected, with at least a two-fold difference between strains with the lowest and the highest trait values. Estimates of heritability ranged from 0.36 (spout side preference) to 0.87 (body weight). Body weight, food intake, and water intake were interrelated among the strains, although substantial strain variation in food and water intakes independent from body weight was present. The strain differences described here provide useful information for designing mutagenesis screens and choosing strains for genetic mapping studies.

Mice genetics body size feeding drinking lateralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allometric Equations, http://www.epa.gov/ncea/pdfs/allometr.pdf. National Center for Environmental Assessment of the Environmental Protection Agency, Washington, DC.Google Scholar
  2. Allison, D. B., Paultre, F., Goran, M. I., Poehlman, E. T., and Heymsfield, S. B. (1995). Statistical considerations regarding the use of ratios to adjust data. Int. J. Obes. Relat. Metab. Disord. 19:644–652.Google Scholar
  3. Altman, P. L., and Katz, D. D. (1979). Inbred and Genetically Defined Strains of Laboratory Animals, Part 1, Mouse and Rat, Federation of American Societies for Experimental Biology, Bethesda, MD.Google Scholar
  4. Bachmanov, A. A., Beauchamp, G. K., and Tordoff, M. G. (2002). Voluntary consumption of NaCl, KCl, CaCl2 and NH4Cl solutions by 28 mouse strains. Behav. Genet. 32:445–457.Google Scholar
  5. Bachmanov, A. A., Reed, D. R., Tordoff, M. G., Price, R. A., and Beauchamp, G. K. (2001). Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiol. Behav. 72:603–613.Google Scholar
  6. Bachmanov, A. A., Tordoff, M. G., and Beauchamp, G. K. (1996). Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. Alcohol. Clin. Exp. Res. 20:201–206.Google Scholar
  7. Bachmanov, A. A., Tordoff, M. G., and Beauchamp, G. K. (1998). Voluntary sodium chloride consumption by mice: Differences among five inbred strains. Behav. Genet. 28:117–124.Google Scholar
  8. Beck, J. A., Lloyd, S., Hafezparast, M., Lennon-Pierce, M., Eppig, J. T., Festing, M. F., and Fisher, E. M. (2000). Genealogies of mouse inbred strains. Nat. Genet. 24:23–25.Google Scholar
  9. Belknap, J. K. (1998). Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav. Genet. 28:29–38.Google Scholar
  10. Betancur, C., Neveu, P. J., and Le Moal, M. (1991). Strain and sex differences in the degree of paw preference in mice. Behav. Brain. Res. 45:97–101.Google Scholar
  11. Biddle, F. G., Coffaro, C. M., Ziehr, J. E., and Eales, B. A. (1993). Genetic variation in paw preference (handedness) in the mouse. Genome 36:935–943.Google Scholar
  12. Biddle, F. G., and Eales, B. A. (1996). The degree of lateralization of paw usage (handedness) in the mouse is defined by three major phenotypes. Behav. Genet. 26:391–406.Google Scholar
  13. Blizard, D. A., and Bailey, D. W. (1979). Genetic correlation between open-field activity and defecation: Analysis with the CXB recombinant-inbred strains. Behav. Genet. 9:349–357.Google Scholar
  14. Collins, R. L. (1991). Reimpressed selective breeding for lateralization of handedness in mice. Brain Res. 564:194–202.Google Scholar
  15. Crabbe, J. C. (1983). Sensitivity to ethanol in inbred mice: Genotypic correlations among several behavioral responses. Behav. Neurosci. 97:280–289.Google Scholar
  16. Crabbe, J. C., Phillips, T. J., Kosobud, A., and Belknap, J. K. (1990). Estimation of genetic correlation: Interpretation of experiments using selectively bred and inbred animals. Alcohol. Clin. Exp. Res. 14:141–151.Google Scholar
  17. Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. Longman, Essex, England.Google Scholar
  18. Festing, M. F. W. (1998). Listing of Inbred Strains of Mice: SM; http://www.informatics.jax.org/external/festing/mouse/docs/SM. Shtml. The Jackson Laboratory, Bar Harbor, ME.Google Scholar
  19. Fuller, J. L. (1972). Genetic aspects of regulation of food intake. Adv. Psychosom. Med. 7:2–24.Google Scholar
  20. Hatton, D. C., Qi, Y., and Belknap, J. K. (2000). Heritability of the blood pressure response to acute ethanol exposure in five inbred strains of mice. Alcohol. Clin. Exp. Res. 24:1483–1487.Google Scholar
  21. Hegmann, J. P., and Possidente, B. (1981). Estimating genetic correlations from inbred strains. Behav. Genet. 11:103–114.Google Scholar
  22. Iakoubova, O. A., Olsson, C. L., Dains, K. M., Ross, D. A., Andalibi, A., Lau, K., Choi, J., Kalcheva, I., Cunanan, M., Louie, J., Nimon, V., Machrus, M., Bentley, L. G., Beauheim, C., Silvey, S., Cavalcoli, J., Lusis, A. J., and West, D. B. (2001). Genome-tagged mice (GTM): Two sets of genome-wide congenic strains. Genomics 74:89–104.Google Scholar
  23. Kraly, F. S. (1984). Physiology of drinking elicited by eating. Psychol. Rev. 91:478–490.Google Scholar
  24. Kronmal, R. A. (1993). Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. 156:379–392.Google Scholar
  25. Kutscher, C. L., and Miller, D. G. (1974). Age-dependent polydipsia in the SWR-J mouse. Physiol. Behav. 13:71–79.Google Scholar
  26. Mogil, J. S., Wilson, S. G., Bon, K., Lee, S. E., Chung, K., Raber, P., Pieper, J. O., Hain, H. S., Belknap, J. K., Hubert, L., Elmer, G. I., Chung, J. M., and Devor, M. (1999). Heritability of nociception, II. ‘Types’ of nociception revealed by genetic correlation Analysis. Pain 80:83–93.Google Scholar
  27. Nadeau, J. H., Singer, J. B., Matin, A., and Lander, E. S. (2000). Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24:221–225.Google Scholar
  28. Nagasawa, H., Amano, K., and Araki, M. (1992). Relationship between pup growth, mother weight, food or water intake in four strains of mice. In Vivo 6:69–71.Google Scholar
  29. Paigen, K., and Eppig, J. T. (2000). A mouse phenome project. Mammal. Genome 11:715–717.Google Scholar
  30. Ramirez, I., and Sprott, R. L. (1978). Genetic mechanisms of drinking and feeding. Neurosci. Biobehav. Rev. 2:15–56.Google Scholar
  31. Richter, C., and Brailey, M. (1929). Water intake and its relation to the surface area of the body. Proc. Natl. Acad. Sci. USA 15:570–578.Google Scholar
  32. Selman, C., Lumsden, S., Bunger, L., Hill, W. G., and Speakman, J. R. (2001). Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204:777–784.Google Scholar
  33. Signore, P., Nosten-Bertrand, M., Chaoui, M., Roubertoux, P. L., Marchaland, C., and Perez-Diaz, F. (1991). An assessment of handedness in mice. Physiol. Behav. 49:701–704.Google Scholar
  34. Silverstein, E., Sokoloff, L., Mickelsen, O., and Jay, J. E. (1958). Polyuria, polydipsia and hydronephrosis in inbred strain of mice. Fed. Proc. 17:1796.Google Scholar
  35. Smith, B. K., Andrews, P. K., and West, D. B. (2000). Macronutrient diet selection in thirteen mouse strains. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R797–R805.Google Scholar
  36. Tordoff, M. G., and Bachmanov, A. A. Monell Mouse Taste Phenotyping Project, http://www.monell.org/MMTPP/. Monell Chemical Senses Center, Philadelphia, PA.Google Scholar
  37. Vadasz, C., Sziraki, I., Sasvari, M., Kabai, P., Laszlovszky, I., Juhasz, B., and Zahorchak, R. (1996). Genomic characterization of two introgression strains (B6.Cb4i5) for the analysis of QTLs. Mammal. Genome 7:545–548.Google Scholar
  38. Waters, N. S., and Denenberg, V. H. (1994). Analysis of two measures of paw preference in a large population of inbred mice. Behav. Brain Res. 63:195–204.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Alexander A. Bachmanov
    • 1
  • Danielle R. Reed
    • 1
  • Gary K. Beauchamp
    • 1
  • Michael G. Tordoff
    • 1
  1. 1.Monell Chemical Senses CenterPhiladelphiaUSA

Personalised recommendations