International Journal of Computer Vision

, Volume 50, Issue 3, pp 271–293 | Cite as

A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model

  • Luminita A. Vese
  • Tony F. Chan
Article

Abstract

We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors earlier in T. Chan and L. Vese (1999. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151) and T. Chan and L. Vese (2001. IEEE-IP, 10(2):266–277). The multiphase level set formulation is new and of interest on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies, including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.

energy minimization multi-phase motion image segmentation level sets curvature PDE's denoising edge detection active contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadieu, O., Debreuve, E., Barlaud, M., and Aubert, G. 1999. In-ward and outward curve evolution using level set method. In Proceedings ICIP, Japan, pp. 188–192.Google Scholar
  2. Ambrosio, L. 1989. A compactness theorem for a special class of functions of bounded variation. Boll.Un.Mat.It., 3(B):857–881.Google Scholar
  3. Ambrosio, L. and Tortorelli, V.M. 1990. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm.Pure Appl.Math., 43:999–1036.Google Scholar
  4. Ambrosio, L. and Tortorelli, V.M. 1992. On the approximation of free discontinuity problems. Bolletino U.M.I., 7(6-B):105–123.Google Scholar
  5. Aubert, G. and Kornprobst, P. 2001. Mathematical Problems in Image Processing.Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147, Springer: New York.Google Scholar
  6. Barles, G. 1994. Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications, vol. 17, Springer-Verlag.Google Scholar
  7. Barles, G. and Souganidis, P.E. 1998. A new approach to front propagation problems: theory and applications. Arch.Rational Mech.Analysis, 141(3):237–296.Google Scholar
  8. Bourdin, B. 1999. Image segmentation with a finite element method. M2AN Math.Model.Numer.Anal., 33(2):229–244.Google Scholar
  9. Bourdin, B. and Chambolle, A. 2000. Implementation of a finite-elements approximation of the Mumford-Shah functional. Numer.Math., 85(4):609–646.Google Scholar
  10. Caselles, V., Morel, J.M., and Sbert, C. 1998. An axiomatic approach to image interpolation. IEEE-IP, 7(3):376–386.Google Scholar
  11. Chambolle, A. 1992. Un théoréme de-convergence pour la seg-mentation des signaux. C.R.Acad.Sci.Paris, 314(I):191–196.Google Scholar
  12. Chambolle, A. 1995. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J.Appl.Math., 55(3):827–863.Google Scholar
  13. Chambolle, A. 1999. Finite-differences discretizations of the Mumford-Shah functional. M2AN Math.Model.Numer.Anal., 33(2):261–288.Google Scholar
  14. Chambolle, A. and Dal Maso, G. 1999. Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math.Model.Numer.Anal., 33(4):651–672.Google Scholar
  15. Chan, T. and Vese, L. 1999. An active contour model without edges. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151.Google Scholar
  16. Chan, T. and Vese, L. 2001. Active contours without edges. IEEE-IP, 10(2):266–277.Google Scholar
  17. Chan, T., Sandberg, B.Y., and Vese, L. 2000. Active contours without edges for vector-valued images. JVCIR, 11:130–141.Google Scholar
  18. Chen, Y.G., Giga, Y., and Goto, S. 1991. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J.Diff.Geometry, 33:749–786.Google Scholar
  19. Chen, S., Merriman, B., Osher, S., and Smereka, P. 1997. A simple level set method for solving Stefan problems. JCP, 135:8–29.Google Scholar
  20. Cohen, L.D. 1997. Avoiding local minima for deformable curves in image analysis. In Curves and Surfaces with Applications in CAGD,A. Le Méhauté, C. Rabut, and L.L. Schumaker (Eds.), pp. 77–84.Google Scholar
  21. Cohen, L., Bardinet, E., and Ayache, N. 1993. Surface reconstruction using active contour models. In Proceedings SPIE 93 Conference on Geometric Methods in Computer Vision, San Diego, CA, July 1993.Google Scholar
  22. Crandall, M.G., Ishii, H., and Lions, P.-L. 1992. User's guide to viscosity solutions of second order partial differential equations. Amer.Math.Soc.Bull., 27:1–67.Google Scholar
  23. Dal Maso, G., Morel, J.M., and Solimini, S. 1992. A variational method in image segmentation: existence and approximation results. Acta Matematica, 168:89–151.Google Scholar
  24. De Giorgi, E. and Ambrosio, L. 1988. Newfunctionals in the calculus of variations. Atti.Accad.Naz.Lincei Rend.Cl.Sci.Fis.Mat.Natur., 82(2):199–210.Google Scholar
  25. De Giorgi, E., Carriero, M., and Leaci, A. 1989. Existence theorem for a minimum problem with free discontinuity set. Arch.Rational Mech.Anal., 108(3):195–218.Google Scholar
  26. Ei, S.-I., Ikota, R., and Mimura, M. 1999. Segregating partition problem in competition-diffusion systems. Interfaces and Free Boundaries, 1(1):57–80.Google Scholar
  27. Evans, L.C. and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. CRC Press: Boca Raton, FL.Google Scholar
  28. Evans, L.C. and Spruck, J. 1991. Motion of level sets by mean curvature. J.Diff.Geometry, 33:635–681.Google Scholar
  29. Fedkiw, R.P. 1999. The ghost fluid method for discontinuities and interfaces. In Proceedings of Godunov Methods: Theory and Applications, Oxford, UK, October 1999.Google Scholar
  30. Fedkiw, R.P., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). JCP, 152:457–492.Google Scholar
  31. Guichard, F. and Morel, J.-M. Image Analysis and P.D.E.'s (to appear).Google Scholar
  32. Jensen, R. 1993. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch.Rat.Mech.Anal., 123:51–74.Google Scholar
  33. Kanizsa, G. 1997. La grammaire du voir. Essais sur la perception. Diderot Editeur, Arts et Sciences.Google Scholar
  34. Koepfler, G., Lopez, C., and Morel, J.M. 1994. A multiscale algorithm for image segmentation by variational method. SIAM J.of Numerical Analysis, 31(1):282–299.Google Scholar
  35. Leonardi, G.P. and Tamanini, I. 1998. On minimizing partitions with infinitely many components. Ann.Univ.Ferrara-Sez.VII-Sc.Mat., XLIV:41–57.Google Scholar
  36. Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., and Kikinis, R. 1999. Co-dimension 2 geodesic active contours for MRA segmentation. Information Processing in Medical Imaging, Proceedings, LNCS, vol. 1613, pp. 126–139.Google Scholar
  37. March, R. 1992. Visual Reconstruction with discontinuities using variational methods. IVC, 10:30–38.Google Scholar
  38. Massari, U. and Tamanini, I. 1993. On the finiteness of optimal partitions. Ann.Univ.Ferrara-Sez.VII-Sc.Mat., XXXIX: 167–185.Google Scholar
  39. Merriman, B., Bence, J.K., and Osher, S. 1994. Motion of multiple junctions: A level set approach. JCP, 112(2):334–363.Google Scholar
  40. Morel, J.M. and Solimini, S. 1988. Segmentation of images by variational methods: A constructive approach. Revista Matematica Universidad Complutense de Madrid, 1:169–182.Google Scholar
  41. Morel, J.M. and Solimini, S. 1989. Segmentation d'images par méthode variationnelle: Une preuve constructive d'existence. CRASS Paris Série I, Math., 308:465–470.Google Scholar
  42. Morel, J.M. and Solimini, S. 1994. Variational Methods in Image Segmentation. PNLDE, vol. 14, Birkhäuser: Basel.Google Scholar
  43. Mumford, D., Nitzberg, M., and Shiota, T. 1993. Filtering, Segmentation and Depth. LNCS, vol. 662, Springer-Verlag: Berlin.Google Scholar
  44. Mumford, D. and Shah, J. 1989. Optimal approximation by piecewise smooth functions and associated variational problems. Comm.Pure Appl.Math. 42:577–685.Google Scholar
  45. Osher, S. and Fedkiw, R.P. 2001. Level set methods: An overview and some recent results. JCP, 169(2):463–502.Google Scholar
  46. Osher, S.J. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Science, vol. 153, Springer.Google Scholar
  47. Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. JCP, 79:12–49.Google Scholar
  48. Paragios, N. and Deriche, R. 2000. Coupled Geodesic active regions for image segmentation: A level set approach. In Proceedings ECCV, Dublin, vol. II, pp. 224–240.Google Scholar
  49. Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 1999. A level set model for image classification. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 306–317.Google Scholar
  50. Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A level set model for image classification. IJCV, 40(3):187–197.Google Scholar
  51. Sapiro, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press: Cambridge, UK.Google Scholar
  52. Sethian, J.A. 1999. Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechan-ics, Computer Vision and Materials Sciences. Cambridge University Press: Cambridge, UK.Google Scholar
  53. Shah, J. 1996. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proceedings CVPR, pp. 136–142.Google Scholar
  54. Shah, J. 1999. Riemannian Drums, Anisotropic Curve Evolution and Segmentation. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 129–140.Google Scholar
  55. Sharon, E., Brandt, A., and Basri, R. 2000. Fast multiscale image segmentation. In Proceedings CVPR, South Carolina, pp. 70–77.Google Scholar
  56. Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE-PAMI, 22(8):888–905.Google Scholar
  57. Smith, K.A., Solis, F.J., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries, 4(3):263–276.Google Scholar
  58. Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flows. JCP, 119:146–159.Google Scholar
  59. Tamanini, I. 1996. Optimal approximation by piecewise constant functions. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, 25:73–85.Google Scholar
  60. Tamanini, I. and Congedo, G. 1996. Optimal segmentation of unbounded functions. Rend.Sem.Mat.Univ.Padova, 95:153–174.Google Scholar
  61. Tsai, A., Yezzi, A., and Willsky, A.S. 2001. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE-IP, 10(8): 1169–1186.Google Scholar
  62. Yezzi, A., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings ICCV, pp. 898–903.Google Scholar
  63. Zhao, H.-K., Chan, T., Merriman, B. and Osher, S. 1996. Avariational level set approach to multiphase motion. JCP 127:179–195.Google Scholar
  64. Zhu, S.C., Lee, T.S., and Yuille, A.L. 1995. Region competition: Unifying snakes, region growing, Energy/Bayes/MDL for multi-band image segmentation. In Proceedings ICCV, Cambridge, pp. 416–423.Google Scholar
  65. Zhu, S.C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmen-tation. IEEE-PAMI, 18:884–900.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Luminita A. Vese
    • 1
  • Tony F. Chan
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations