Glycoconjugate Journal

, Volume 18, Issue 9, pp 661–684 | Cite as

Human airway mucin glycosylation: A combinatory of carbohydrate determinants which vary in cystic fibrosis

  • Geneviève Lamblin
  • Sophie Degroote
  • Jean-Marc Perini
  • Philippe Delmotte
  • Andrée Scharfman
  • Monique Davril
  • Jean-Marc Lo-Guidice
  • Nicole Houdret
  • Viviane Dumur
  • André Klein
  • Philippe Rousse


Human airway mucins represent a very broad family of polydisperse high molecular mass glycoproteins, which are part of the airway innate immunity. Apomucins, which correspond to their peptide part, are encoded by at least 6 different mucin genes (MUC1, MUC2, MUC4, MUC5B, MUC5AC and MUC7). The expression of some of these genes (at least MUC2 and MUC5AC) is induced by bacterial products, tobacco smoke and different cytokines.

Human airway mucins are highly glycosylated (70–80% per weight). They contain from one single to several hundred carbohydrate chains. The carbohydrate chains that cover the apomucins are extremely diverse, adding to the complexity of these molecules. Structural information is available for more than 150 different O-glycan chains corresponding to the shortest chains (less than 12 sugars).

The biosynthesis of these carbohydrate chains is a stepwise process involving many glycosyl- or sulfo-transferases. The only structural element shared by all mucin O-glycan chains is a GalNAc residue linked to a serine or threonine residue of the apomucin. There is growing evidence that the apomucin sequences influence the first glycosylation reactions. The elongation of the chains leads to various linear or branched extensions. Their non-reducing end, which corresponds to the termination of the chains, may bear different carbohydrate structures, such as histo-blood groups A or B determinants, H and sulfated H determinants, Lewis a, Lewis b, Lewis x or Lewis y epitopes, as well as sialyl- or sulfo- (sometimes sialyl- and sulfo-) Lewis a or Lewis x determinants. The synthesis of these different terminal determinants involves three different pathways with a whole set of glycosyl- and sulfo-transferases.

Due to their wide structural diversity forming a combinatory of carbohydrate determinants as well as their location at the surface of the airways, mucins are involved in multiple interactions with microorganisms and are very important in the protection of the underlying airway mucosa.

Airway mucins are oversulfated in cystic fibrosis and this feature has been considered as being linked to a primary defect of the disease. However, a similar pattern is observed in mucins from patients suffering from chronic bronchitis when they are severely infected. Airway mucins from severely infected patients suffering either from cystic fibrosis or from chronic bronchitis are also highly sialylated, and highly express sialylated and sulfated Lewis x determinants, a feature which may reflect severe mucosal inflammation or infection.

These determinants are potential sites of attachment for Pseudomonas aeruginosa, the pathogen responsible for most of the morbidity and mortality in cystic fibrosis, and the expression of the sulfo- and glycosyl-transferases involved in their biosynthesis is increased by TNFα.

In summary, airway inflammation may simultaneously induce the expression of mucin genes (MUC2 and MUC5AC) and the expression of several glycosyl- and sulfo-transferases, therefore modifying the combinatory glycosylation of these molecules.

airway mucin O-glycosylation sulfation inflammation cystic fibrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roussel P, Lamblin G, Human mucosal mucins in diseases. In Glycoproteins and Disease, edited by Montreuil J, Vliegenthart JFG, Schachter H (Elsevier, Amsterdam,1996), pp.351–93.Google Scholar
  2. 2.
    Shimizu Y, Shaw S, Cell adhesion. Mucins in the mainstream, Nature 366,630–1 (1993).Google Scholar
  3. 3.
    Slayter HS, Lamblin G, Le Treut A, Galabert C, Houdret N, Degand P, Roussel P, Complex structure of human bronchial mucus glycoprotein,Eur J Biochem 142,209–18 (1984).Google Scholar
  4. 4.
    Rose MC, Voter WA, Brown CF, Kaufman B, Structural features of human tracheobronchial mucus glycoprotein,Biochem J 222, 371–7 (1984).Google Scholar
  5. 5.
    Sheehan JK, Oates K, Carlstedt I, Electron microscopy of cervical, gastric and bronchial mucus glycoproteins,Biochem J 239, 147–53 (1986).Google Scholar
  6. 6.
    Thornton DJ, Sheehan JK, Lindgren H, Carlstedt I, Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural “architecture,” Biochem J 276,667–75 (1991).Google Scholar
  7. 7.
    Lamblin G, Lhermitte M, Klein A, Houdret N, Scharfman A, Ramphal R, Roussel P, The carbohydrate diversity of human respiratory mucins: A protection of the underlying mucosa?Am Rev Respir Dis 144,S19–24 (1991).Google Scholar
  8. 8.
    Jeffery PK, Gaillard D, Moret S, Human airway secretory cells during development and in mature airway epithelium,Eur Respir J 5,93–104 (1992).Google Scholar
  9. 9.
    Jeffery PK, Airway mucosa: Secretory cells, mucus and mucin genes,Eur Respir J 10, 1655–62 (1997).Google Scholar
  10. 10.
    Debailleul V, Laine A, Huet G, Mathon P, d'Hooghe MC, Aubert JP, Porchet N, Human mucin genes MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6 express stable and extremely large mRNAs and exhibit a variable length polymorphism—An improved method to analyze large mRNAs,J Biol Chem 273, 881–90 (1998).Google Scholar
  11. 11.
    Perez-Vilar J, Hill RL,The structure and assembly of secreted mucins,J Biol Chem 274, 31751–4 (1999).Google Scholar
  12. 12.
    Berger JT, Voynow JA, Peters KW, Rose MC, Respiratory carcinoma cell lines. MUC genes and glycoconjugates,Am J Respir Cell Mol Biol 20,500–10 (1999).Google Scholar
  13. 13.
    Brockhausen I, Pathways of O-glycan biosynthesis in cancer cells,Biochim Biophs Acta 1473, 67–95 (1999).Google Scholar
  14. 14.
    Pigny P, Guyonnet-Duperat V, Hill AS, Pratt WS, Galiegue-Zouitina S, d'Hooge MC, Laine A, Van-Seuningen I, Degand P, Gum JR, Kim YS, Swallow DM, Aubert JP, Porchet N, Human mucin genes assigned to 11p15.5: Identification and organization of a cluster of genes,Genomics 38,340–52 (1996).Google Scholar
  15. 15.
    Desseyn JL, Buisine MP, Porchet N, Aubert JP, Degand P, Laine A, Evolutionary history of the 11p15 human mucin gene family, J Mol Evol 46,102–6 (1998).Google Scholar
  16. 16.
    Hovenberg HW, Davies JR, Herrmann A, Linden CJ, Carlstedt I, MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions,Glycoconjugate J 13,839–47 (1996).Google Scholar
  17. 17.
    Sharma P, Dudus L, Nielsen PA, Clausen H, Yankaskas JR, Hollingsworth MA, Engelhardt JF, MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways,Am J Respir Cell Mol Biol 19,30–7 (1998).Google Scholar
  18. 18.
    Reid CJ, Gould S, Harris A, Developmental expression of mucin genes in the human respiratory tract, Am J Respir Cell Mol Biol 17,592–8 (1997).Google Scholar
  19. 19.
    Buisine MP, Devisme L, Copin MC, Durand-Réville M, Gosselin B, Aubert JP, Porchet N, Developmental mucin gene expression in the human respiratory tract,Am J Respir Cell Mol Biol 20, 209–18 (1999).Google Scholar
  20. 20.
    Shankar V, Pichan P, Eddy RLJr, Tonk V, Nowak N, Sait SN, Shows TB, Schultz RE, Gotway G, Elkins RC, Gilmore MS, Sachdev GP, Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus,Am J Respir Cell Mol Biol 16, 232–42 (1997).Google Scholar
  21. 21.
    Lamb D, Reid L, Goblet cells increase in rat bronchial epithelium after exposure to cigarette and cigar tobacco smoke, Br Med J 1, 33–5 (1969).Google Scholar
  22. 22.
    Li JD, Dohrman AF, Gallup M, Miyata S, Gum JR, Kim YS, Nadel JA, Prince A, Basbaum CB, Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease,Proc Natl Acad Sci USA 94,967–72 (1997).Google Scholar
  23. 23.
    Basbaum C, Lemjabbar H, Longphre M, Daizong L, Gensch E, McNamara N, Control of mucin transcription by diverse injuryinduced signaling pathways,Am J Respir Crit Care Med 160, S44–8 (1999).Google Scholar
  24. 24.
    Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A, Escudier E, Nadel J, Basbaum C, Mucin (MUC2 and MUC5AC) transcriptional regulation in response to gram-positive and-negative bacteria, Biochim Biophys Acta 1406,251–9 (1998).Google Scholar
  25. 25.
    Lemjabbar H, Basbaum C, Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells,Nat Med 8,41–6 (2002).Google Scholar
  26. 26.
    Wang B, Lim DJ, Han J, Kim YS, Basbaum CB, Li JD, Novel cytoplasmic proteins of nontypeable Haemophilus influenzae upregulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway,J Biol Chem 277,949–57(2002).Google Scholar
  27. 27.
    Chen Y, Zhao YH, Di YP, Wu R, Characterization of human mucin 5B gene expression in airway epithelium and the genomic clone of the amino-terminal and 5′-flanking region, Am J Respir Cell Mol Biol 25,542–53 (2001).Google Scholar
  28. 28.
    Levine SJ, Larivee P, Logun C, Angus CW, Ognibene FP, Shelhamer JH, Tumor necrosis factor-? induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells,Am J Respir Cell Mol Biol 12,196–204 (1995).Google Scholar
  29. 29.
    Borchers MT, Carty MP, Leikauf GD, Regulation of human airway mucins by acrolein and inflammatory mediators,Am J Physiol 276, L549–55 (1999).Google Scholar
  30. 30.
    Longphre M, Li D, Gallup M, Drori L, Ordonez CL, Redman T, Wenzel S, Bice DE, Fahy JV, Basbaum C,Allergen-induced IL-9 directly stimulates mucin transcription in epithelial cells J Clin Invest 104,1375–82 (1999).Google Scholar
  31. 31.
    Louahed J, Toda M, Jen J, Hamid Q, Renauld JC, Levitt RC, Nicolaides NC, Interleukin-9 upregulates mucus expression in the airways,Am J Respir Cell Mol Biol 22,649–56 (2000).Google Scholar
  32. 32.
    Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA, IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo,J Immunol 162,6233–7 (1999).Google Scholar
  33. 33.
    Kai H, Yoshitake K, Hisatsune A, Kido T, Isohama Y, Takahama K, Miyata T, Dexamethasone suppresses mucus production and MUC-2 and MUC-5AC gene expression by NCI-H292 cells,Am J Physiol 271,L484–8 (1996).Google Scholar
  34. 34.
    Degand P, Mazzuca M, Roussel P, Lamblin G, Les mucines bronchiques: Purification et classification—Etude en microscopie électronique des glandes bronchiques. In Colloques Internationaux du CNRS (2nd International Symposium on Glycoconjugates) 221, 401–14 (1974).Google Scholar
  35. 35.
    Carlson DM, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins,J Biol Chem 243,616–26 (1968).Google Scholar
  36. 36.
    Klein A, Diaz S, Ferreira I, Lamblin G, Roussel P, Manzi AE,New sialic acids from biological sources identified by a comprehensive and sensitive approach: Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones, Glycobiology 7,421–32 (1997).Google Scholar
  37. 37.
    Roussel P, Lamblin G, Degand P, Walker-Nasir E, Jeanloz RW, Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis, J Biol Chem 250, 2114–22 (1975).Google Scholar
  38. 38.
    Lamblin G, Lhermitte M, Boersma A, Roussel P, Reinhold V, Oligosaccharides of human bronchial glycoproteins. Neutral diand trisaccharides isolated from a patient suffering from chronic bronchitis,J Biol Chem 255,4595–8 (1980).Google Scholar
  39. 39.
    Van Halbeek H, Dorland L, Vliegenthart JFG, Hull WE, Lamblin G, Lhermitte M, Boersma A, Roussel P, Primary-structure determination of fourteen neutral oligosaccharides derived from bronchial-mucus glycoproteins of patients suffering from cystic fibrosis, employing 500-MHz 1H-NMR spectroscopy,Eur J Biochem 127,7–20 (1982).Google Scholar
  40. 40.
    Lamblin G, Boersma A, Lhermitte M, Roussel P, Mutsaers JHGM, Van Halbeek H, Vliegenthart JFG, Further characterization, by a combined high-performance liquid chromatography/1H-NMR approach, of the heterogeneity displayed by the neutral carbohydrate chains of human bronchial mucins,Eur J Biochem 143,227–36 (1984).Google Scholar
  41. 41.
    Lamblin G, Boersma A, Klein A, Roussel P, Van Halbeek H, Vliegenthart JFG, Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAcα(2→3)Gal?(1→4)Fuc[α(1→3)]GlcNAc?1→ structural element revealed by 500–MHz 1HNMR spectroscopy,J Biol Chem 259,9051–8 (1984).Google Scholar
  42. 42.
    Mawhinney TP, Adelstein E, Morris DA, Mawhinney AM, Barbero GJ, Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins,J Biol Chem 262,2994–3001 (1987).Google Scholar
  43. 43.
    Breg J, Van Halbeek H, Vliegenthart JFG, Lamblin G, Houvenaghel MC, Roussel P, Structure of sialyl-oligosaccharides isolated from bronchial mucus glycoproteins of patients (blood group O) suffering from cystic fibrosis,Eur J Biochem 168,57–68 (1987).Google Scholar
  44. 44.
    Klein A, Lamblin G, Lhermitte M, Roussel P, Breg J, Van Halbeek H, Vliegenthart JFG, Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMRspectroscopy and quantitative sugar analysis. 1. Structure of 16 oligosaccharides having the Gal ? (1→3)GalNAc-ol core (type 1) or the Gal ? (1→3)[GlcNAc ? (1→6)]GalNAc-ol core (type 2), Eur J Biochem 171, 631–42 (1988).Google Scholar
  45. 45.
    Breg J, Van Halbeek H, Vliegenthart JFG, Klein A, Lamblin G, Roussel P, Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 2. Structure of 19 oligosaccharides having the GlcNAc beta(1→3)GalNAc-ol core (type 3) or the GlcNAc beta(1→3)[GlcNAc beta(1→6)]GalNAc-ol core (type 4), Eur J Biochem 171,643–54 (1988).Google Scholar
  46. 46.
    Van Halbeek H, Breg J, Vliegenthart JFG, Klein A, Lamblin G, Roussel P, Isolation and structural characterization of low-molecular-mass monosialyl oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis,Eur J Biochem 177,443–60 (1988).Google Scholar
  47. 47.
    Klein A, Carnoy C, Lamblin G, Roussel P, Van Kuik A, De Waard P, Vliegenthart JFG, Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratory mucus glycoproteins from a patient suffering from bronchiectasis. 1. Structure of 11 oligosaccharides having the GlcNAc ?(1→3)Gal? (1→4)GlcNAc? (1→6)GalNAc-o1 structural element in common, Eur J Biochem 198,151–68 (1991).Google Scholar
  48. 48.
    Van Kuik A, De Waard P, Vliegenthart JFG, Klein A, Carnoy C, Lamblin G, Roussel P, Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratorymucus glycoproteins of a patient suffering from bronchiectasis. 2. Structure of twelve hepta-to-nonasaccharides, six of which possess the GlcNAc?(1→3)[Gal? (1→4)GlcNAc ? (1→6)]Gal? (1→3)GalNAc-ol common structural element, Eur J Biochem 198,169–82 (1991).Google Scholar
  49. 49.
    Lhermitte M, Rhamoune H, Lamblin G, Roussel P, Strang AM, van Halbeek H, Structures of neutral oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b) patient suffering from chronic bronchitis,Glycobiology 1,277–93 (1991).Google Scholar
  50. 50.
    Lamblin G, Rahmoune H, Wieruszeski JM, Lhermitte M, Strecker G, Roussel P, Structure of two sulphated oligosaccharides from respiratory mucins of a patient suffering from cystic fibrosis. A fast-atom-bombardment m.s. and 1H-n.m.r. spectroscopic study,Biochem J 275,199–206 (1991).Google Scholar
  51. 51.
    Mawhinney TP, Adelstein E, Landrum DC, Gayer DA, Barbero GJ, Structural analysis of monosulfated side-chain oligosaccharides isolated from human tracheobronchial mucous glycoproteins, Carbohyd Res 223,187–207 (1992).Google Scholar
  52. 52.
    Mawhinney TP, Landrum DC, Gayer DA, Barbero GJ,Sulfated sialyl-oligosaccharides derived from tracheobronchial mucous glycoproteins of a patient suffering from cystic fibrosis,Carbohyd Res 235,179–97 (1992).Google Scholar
  53. 53.
    Sangadala S, Bhat UR, Mendicino J, Quantitation and structures of oligosaccharides chains of human trachea mucin glycoproteins, Mol Cell Biochem 118,75–90 (1992).Google Scholar
  54. 54.
    Klein A, Carnoy C, Lamblin G, Roussel P, Van Kuik A, Vliegenthart JFG, Isolation and structural characterization of novel sialylated oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis,Eur J Biochem 211,491–500 (1993).Google Scholar
  55. 55.
    Sangadala S, Bhat UR, Mendicino J,Structures of sulfated oligosaccharides in human trachea mucin glycoproteins,Mol Cell Biochem 126,37–47 (1993).Google Scholar
  56. 56.
    Lo-Guidice JM, Wieruszewski JM, Lemoine J, Verbert A, Roussel P, Lamblin G, Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis,J Biol Chem 269,18794–813(1994).Google Scholar
  57. 57.
    Van Halbeek H, Strang AM, Lhermitte M, Rahmoune H, Lamblin G, Roussel P, Structures of monosialyl oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b?) patient suffering from chronic bronchitis. Characterization of a novel type of mucin carbohydrate core structure,Glycobiology 4,203–19 (1994).Google Scholar
  58. 58.
    Lo-Guidice JM, Herz H, Lamblin G, Plancke Y, Roussel P, Lhermitte M, Structures of sulfated oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b?) patient suffering from chronic bronchitis, Glycoconjugate J 14,113–25 (1997).Google Scholar
  59. 59.
    Thomsson KA, Carlstedt I, Karlsson NG, Karlsson H, Hansson GC, Different O-glycosylation of respiratory mucin glycopeptides from a patient with cystic fibrosis,Glycoconjugate J 15, 823–33 (1998).Google Scholar
  60. 60.
    Mazzuca M, Roche AC, Lhermitte M, Roussel P, Limulus polyphemus lectin sites in human bronchial mucosa,J Histochem Cytochem 25,470–3 (1977).Google Scholar
  61. 61.
    Lhermitte M, Lamblin G, Lafitte JJ, Degand P, Roussel P, Mazzuca M, Human, bronchial-mucus glycoproteins: A comparison between chemical properties and affinity for lectins,Carbohyd Res 92,333–42 (1981).Google Scholar
  62. 62.
    Mazzuca M, Lhermitte M, Lafitte JJ, Roussel P, Use of lectins for detection of glycoconjugates in the glandular cells of the human bronchial mucosa,J Histochem Cytochem 30,956–66 (1982).Google Scholar
  63. 63.
    Schulte BA, Spicer SS,Light microscopic histochemical detection of sugar residues in secretory glycoproteins of rodent and human tracheal glands with lectin-horseradish peroxidase conjugates and the galactose oxidase-Schiff sequence,J Histochem Cytochem 31,391–403 (1983).Google Scholar
  64. 64.
    Spicer SS, Schulte BA, Thomopoulos GN, Histochemical properties of the respiratory tract epithelium in different species,Am Rev Respir Dis 128,S20–6 (1983).Google Scholar
  65. 65.
    Emery N, Palfaï SB, Place G, Oriol R, Hall RL, Roussel P, Lhermitte M, A new monoclonal antibody (3D3) generated with human respiratory mucins and directed against Lewis determinants, Glycobiology 5,563–70 (1995).Google Scholar
  66. 66.
    Hounsell EF, Feizi T,Gastrointestinal mucins. Structures and antigenicities of their carbohydrate chains in health and disease, Med Biol 60,227–36 (1982).Google Scholar
  67. 67.
    Roth J, Wang Y, Eckhardt AE, Hill RL, Subcellular localization of the UDP-N-acetyl-D-galactosamine: Polypeptide Nacetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland,Proc Natl Acad Sci USA 91, 8935–9 (1994).Google Scholar
  68. 68.
    Schweizer A, Clausen H, van Meer G, Hauri HP, Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment,J Biol Chem 269, 4035–41 (1994).Google Scholar
  69. 69.
    White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H, Purification and cDNA cloning of a human UDP-N-acetyl-α-Dgalactosamine: PolypeptideN-acetylgalactosaminyltransferase,J Biol Chem 270,24156–65 (1995).Google Scholar
  70. 70.
    Bennett EP, Hassan H, Clausen H,cDNA cloning and expression of a novel humanUDP-N-acetyl-;α-D-galactosamine polypeptide N-acetylgalactosaminyltransferase, GalNAc-T3,J Biol Chem 271,17006–12 (1996).Google Scholar
  71. 71.
    Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H, Cloning of a human UDP-N-acetyl-α-D-Galactosamine: Polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat, J Biol Chem 273,30472–81 (1998).Google Scholar
  72. 72.
    Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H, Cloning and characterization of a close homologue of human UDP-N-acetyl-α-D-galactosamine: Polypeptide N-acetylgalactosaminyl transferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy,J Biol Chem 274,25362–70 (1999).Google Scholar
  73. 73.
    White KE, Lorenz B, Evans WE, Meitinger T, Strom TM, Econs MJ, Molecular cloning of a novel human UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8, and analysis as a candidate autosomal dominant hypophosphatemic rickets (ADHR) gene,Gene 246,347–56 (2000).Google Scholar
  74. 74.
    Bennett EP, Hassan H, Hollingsworth MA, Clausen H,A novel human UDP-N-acetyl-D-galactosamine: Polypeptide Nacetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates,FEBS Lett 460,226–30 (1999).Google Scholar
  75. 75.
    Toba S, Tenno M, Konishi M, Mikami T, Itoh N, Kurosaka A,Brain-specific expression of a novel human UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T9), Biochim Biophys Acta 1493,264–8 (2000).Google Scholar
  76. 76.
    Ju T, Brewer K, D'souza A, Cummings RD, Canfield WM, Cloning and expression of human core 1 beta1,3-galactosyltransferase,J Biol Chem 277,178–86 (2002).Google Scholar
  77. 77.
    Iwai T, Inaba N, Naundorf A, Zhang Y, Gotoh M, Iwasaki H, Kudo T, Togayachi A, Ishizuka Y, Nakanishi H, Narimatsu H,Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3structure of O-glycans,J Biol Chem 277,12802–9 (2002).Google Scholar
  78. 78.
    Bierhuizen MF, Fukuda M, Expression cloning of a cDNA encoding UDP-GlcNAc:Gal ?1-3-GalNAc-R (GlcNAc to GalNAc) ?1-6GlcNAc transferase by gene transfer intoCHOcells expressing polyoma large tumor antigen,Proc Natl Acad Sci USA 89, 9326–30 (1992).Google Scholar
  79. 79.
    Yeh JC, Ong E, Fukuda M, Molecular cloning and expression of a novel ?-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches,J Biol Chem 274,3215–21 (1999).Google Scholar
  80. 80.
    Schwientek T, Nomoto M, Levery SB, Merkx G, van Kessel AG, Bennett EP, Hollingsworth MA, Clausen H, Control of O-glycan branch formation. Molecular cloning of human cDNAencoding a novel ?1,6-N-acetylglucosaminyltransferase forming core 2 and core 4,J Biol Chem 274, 4504–12 (1999).Google Scholar
  81. 81.
    Schwientek T, Yeh JC, Levery SB, Keck B, Merkx G, van Kessel AG, Fukuda M, Clausen H, Control of O-glycan branch formation. Molecular cloning and characterization of a novel thymusassociated core 2 beta1, 6-N-acetylglucosaminyltransferase,J Biol Chem 275,11106–13 (2000).Google Scholar
  82. 82.
    Ikehara Y, Kojima N, Kurosawa N, Kudo T, Kono M, Nishihara S, Issiki S, Morozumi K, Itzkowitz S, Tsuda T, Nishimura SI, Tsuji S, Narimatsu H, Cloning and expression of a human gene encoding an N-acetylgalactosamine-α2,6-sialyltransferase (ST6GalNAc I): A candidate for synthesis of cancer-associated sialyl-Tn antigens,Glycobiology 11, 1213–24 (1999).Google Scholar
  83. 83.
    Samyn-Petit B, Krzewinski-Recchi MA, Steelant WFA, Delannoy P, Harduin-Lepers A, Molecular cloning and functionnal expression of human ST6GalNAc II. Molecular expression in various human cultured cells,Biochim Biophys Acta 1474,201–11 (2000).Google Scholar
  84. 84.
    Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P, The human sialyltransferase family,Biochimie 83,727–37 (2001).Google Scholar
  85. 85.
    Harduin-Lepers A, Stokes DC, Steelant WF, Samyn-Petit B, Krzewinski-Recchi MA, Vallejo-Ruiz V, Zanetta JP, Auge C, Delannoy P, Cloning, expression and gene organization of a human Neu5Ac alpha 2-3Gal beta 1-3GalNAc alpha 2,6-sialyltransferase: hST6GalNAcIV,Biochem J 352,37–48 (2000).Google Scholar
  86. 86.
    Bierhuizen MF, Mattei MG, Fukuda M, Expression of the developmental I antigen by a cloned human cDNAencoding a member of a ?-1,6-N-acetylglucosaminyltransferase gene family,Genes Dev 7,468–78 (1993).Google Scholar
  87. 87.
    Sasaki K, Kurata-Miura K, Ujita M, Angata K, Nakagawa S, Sekine S, Nishi T, Fukuda M, Expression cloning of cDNA encoding a human ?-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis,Proc Natl Acad Sci USA 94,14294–99 (1997).Google Scholar
  88. 88.
    Shiraishi N, Natsume A, Togayachi A, Endo T, Akashima T, Yamada Y, Imai N, Nakagawa S, Koizumi S, Sekine S, Narimatsu H, Sasaki K, Identification and characterization of three novel beta 1,3-N-acetylglucosaminyltransferases structurally related to the beta 1,3-galactosyltransferase family,J Biol Chem 276,3498–507 (2001).Google Scholar
  89. 89.
    Masri KA, Appert HE, Fukuda MN, Identification of the fulllength coding sequence for human galactosyltransferase (?-Nacetylglucosaminide: ?1,4-galactosyltransferase),Biochem Biophys Res Commun 157,657–63 (1988).Google Scholar
  90. 90.
    Lo NW, Shaper JH, Pevsner J, Shaper NL, The expanding ?4-galactosyltransferase gene family: Messages from the databanks, Glycobiology 8,517–26 (1998).Google Scholar
  91. 91.
    Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, vanKessel AG, Rygaard E, Hassan H, Bennett E, Clausen H,A family of human ?4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:?-N-acetylglucosamine ?1,4-galactosyltransferases, ?4Gal-T2 and ?4Gal-T3.J Biol Chem 272,31979–91 (1997); published erratum appears in J Biol Chem 273, 18674 (1998).Google Scholar
  92. 92.
    Sato T, Furukawa K, Bakker H, Van den Eijnden DH, Van Die I, Molecular cloning of a human cDNA encoding beta-1,4-galactosyltransferase with 37% identity to mammalian UDPGal: GlcNAc beta-1,4-galactosyltransferase,Proc Natl Acad Sci USA 95,472–7 (1998).Google Scholar
  93. 93.
    Sasaki K, Sasaki E, Kawashima K, Hanai N, Nishi T, Hasegawa M. (1994) ?-1,3-galactosyltransferase in Patent: JP 1994181759-A 1 05-JUL-1994; KYOWA HAKKO KOGYO CO LTD.Google Scholar
  94. 94.
    Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H, A family of human ?3-galactosyltransferases. Characterization of four members of a UDP-galactose:?-N-acetylglucosamine/?-Nacetylgalactosamine ?-1,3-galactosyltransferase family,J Biol Chem 273,12770–8 (1998).Google Scholar
  95. 95.
    Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T, Narimatsu H, Cloning, expression, and characterization of a novel UDPgalactose: ?-N-acetylglucosamine ?1,3-galactosyltransferase (?3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom,J Biol Chem 274,12499–507 (1999).Google Scholar
  96. 96.
    Amado M, Almeida R, Schwientek T, Clausen H, Identification and characterization of large galactosyltransferase gene families: Galactosyltransferases for all functions,Biochim Biophys Acta 1473,35–53 (1999).Google Scholar
  97. 97.
    Larsen RD, Ernst LK, Nair RP, Lowe JB, Molecular cloning, sequence, and expression of a human GDP-L-fucose: ?-Dgalactoside 2-α-L-fucosyltransferase cDNA that can form the H blood group antigen,Proc Natl Acad Sci USA 87,6674–8 (1990).Google Scholar
  98. 98.
    Emery N, Lo-Guidice JM, Lafitte JJ, Lhermitte M, Roussel P, The fucosylation and secretion of mucins synthesized in human bronchial cells vary according to growth conditions,Glycobiology 7,95–101 (1997).Google Scholar
  99. 99.
    Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB,Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2)—Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype,J Biol Chem 270,4640–9 (1995).Google Scholar
  100. 100.
    Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB, A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4)fucosyltransferase,Genes Dev 4,1288–1303 (1990).Google Scholar
  101. 101.
    Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK, Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion, J Biol Chem 266,17467–77 (1991).Google Scholar
  102. 102.
    Weston BW, Smith PL, Kelly RJ, Lowe JB, Molecular cloning of a fourth member of a human α(1,3)fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes,J Biol Chem 267,24575–84 (1992); published erratum appears in J Biol Chem 268, 18398 (1993).Google Scholar
  103. 103.
    Weston BW, Nair RP, Larsen RD, Lowe JB,Isolation of a novel human α(1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group α(1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities,J Biol Chem 267, 4152–60 (1992).Google Scholar
  104. 104.
    Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T, Expression cloning of a novel α1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes,J Biol Chem 269,14730–7 (1994).Google Scholar
  105. 105.
    Kaneko M, Kudo T, Iwasaki H, Ikehara Y, Nishihara S, Nakagawa S, Sasaki K, Shiina T, Inoko H, Saitou N, Narimatsu H, α1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse: Molecular cloning, characterization and tissue distribution of human Fuc-TIX,FEBS Lett 452, 237–42 (1999).Google Scholar
  106. 106.
    Cailleau-Thomas A, Coullin P, Candelier JJ, Balanzino L, Mennesson B, Oriol R, Mollicone R, FUT4 and FUT9 genes are expressed early in human embryogenesis,Glycobiology 10, 789–802 (2000).Google Scholar
  107. 107.
    Grundmann U, Nerlich C, Rein T, Zettlmeissl G, CompletecDNA sequence encoding human ?-galactoside α-2,6-sialyltransferase, Nucleic Acids Res 18,667 (1990).Google Scholar
  108. 108.
    Kitagawa H, Paulson JC, Differential expression of five sialyltransferase genes in human tissues,J Biol Chem 269,17872–8 (1994).Google Scholar
  109. 109.
    Kim YJ, Kim KS, Kim SH, Kim CH, Ko JH, Choe IS, Tsuji S, Lee YC, Molecular cloning and expression of human Gal?1,3GalNAc α2,3-sialytransferase (hST3Gal II),Biochem Biophys Res Commun 228,324–7 (1996).Google Scholar
  110. 110.
    Kitagawa H, Paulson JC, Cloning and expression of human Gal?1,3(4)GlcNAcα 2,3-sialyltransferase,Biochem Biophys Res Commun 194,375–82 (1993).Google Scholar
  111. 111.
    Kitagawa H, Paulson JC, Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups,J Biol Chem 269,1394–401 (1994).Google Scholar
  112. 112.
    Kitagawa H, Mattei MG, Paulson JC, Genomic organization and chromosomal mapping of the Gal?1,3GalNAc/Gal?1,4GlcNAc α2,3-sialyltransferase,J Biol Chem 271,931–8 (1996).Google Scholar
  113. 113.
    Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M, Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase,J Biol Chem 273,31652–5 (1998).Google Scholar
  114. 114.
    Okajima T, Fukumoto S, Miyazaki H, Ishida H, Kiso M, Furukawa K, Urano T, Furukawa K,Molecular cloning of a novel α2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids,J Biol Chem 274, 11479–86 (1999).Google Scholar
  115. 115.
    Honke K, Tsuda M, Koyota S, Wada Y, Iida-Tanaka N, Ishizuka I, Nakayama J, Taniguchi N,Molecular cloning and characterization of a human beta-Gal-3_-sulfotransferase that acts on both type 1 and type 2 (Gal beta 1-3/1-4GlcNAc-R) oligosaccharides, J Biol Chem 276,267–74 (2001).Google Scholar
  116. 116.
    Suzuki A, Hiraoka N, Suzuki M, Angata K, Misra AK, McAuliffe J, Hindsgaul O, Fukuda M, Molecular cloning and expression of a novel human beta-Gal-3-O-sulfotransferase that acts preferentially on N-acetyllactosamine in N-and O-glycans, J Biol Chem 276,24388–95 (2001).Google Scholar
  117. 117.
    Seko A, Hara-Kuge S, Yamashita K, Molecular cloning and characterization of a novel human galactose 3-O-sulfotransferase that transfers sulfate to Gal beta 1→l3GalNAc residue in O-glycans, J Biol Chem 276,25697–704 (2001).Google Scholar
  118. 118.
    Uchimura K, Muramatsu H, Kaname T, Ogawa H, Yamakawa T, Fan QW, Mitsuoka C, Kannagi R, Habuchi O, Yokoyama I, Yamamura K, Ozaki T, Nakagawara A, Kadomatsu K, Muramatsu T, Human N-acetylglucosamine-6-O-sulfotransferase involved in the biosynthesis of 6-sulfo sialyl Lewis X: Molecular cloning, chromosomal mapping, and expression in various organs and tumor cells,J Biochem (Tokyo) 124,670–8 (1998).Google Scholar
  119. 119.
    Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo FR, Huang CC, Kannagi R, Rosen SD, Hemmerich S, Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin,J Cell Biol 145,899–910 (1999).Google Scholar
  120. 120.
    Hemmerich S, Lee JK, Bhakta S, Bistrup A, Ruddle NR, Rosen SD, Chromosomal localization and genomic organization for the galactose/N-Acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferase gene family,Glycobiology 11, 75–87 (2001).Google Scholar
  121. 121.
    Elhammer AP, Kezdy FJ, Kurosaka A, The acceptor specificity of UDP-GalNAc: Polypeptide N-acetylgalactosaminyl-transferases, Glycoconjugate J 16,171–80 (1999).Google Scholar
  122. 122.
    Tetaert D, Ten Hagen KG, Richet C, Boersma A, Gagnon J, Degand P, Glycopeptide N-acetylgalactosaminyltransferase specificities for O-glycosylated sites on MUC5AC mucin motif peptides,Biochem J 357,313–20 (2001).Google Scholar
  123. 123.
    Vavasseur F, Dole K, Yang J, Matta KL, Myerscough N, Corfield A, Paraskeva C, Brockhausen I, O-glycan biosynthesis in human colorectal adenoma cells during progression to cancer,Eur J Biochem 222,415–24 (1994).Google Scholar
  124. 124.
    Granovsky M, Bielfeldt T, Peters S, Paulsen H, Meldal M, Brockhausen J, Brockhausen I, UDP-galactose: Glycoprotein-N-acetyl-D-galactosamine 3-?-D-galactosyl-transferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates,Eur J Biochem 221,1039–46 (1994).Google Scholar
  125. 125.
    Gerken TA, Gilmore M, Zhang J, Determination of the sitespecific oligosaccharide distribution of the O-glycans attached to the porcine submaxillary mucin tandem repeat: Further evidence for the modulation of O-glycan side chain structures by peptide sequence,J Biol Chem 277,7736–1 (2002).Google Scholar
  126. 126.
    Emery N, Place GA, Dodd S, Lhermitte M, David G, Lamblin G, Perini JM, Page AM, Hall RL, Roussel P, Mucous and serous secretions of human bronchial epithelial cells in secondary culture, Am J Respir Cell Mol Biol 12,130–41 (1995).Google Scholar
  127. 127.
    Yamamoto F, Clausen H, White T, Marken J, Hakomori S, Molecular genetic basis of the histoblood group ABO,Nature 345, 229–33 (1990).Google Scholar
  128. 128.
    Hakomori S, Antigen structure and genetic basis of histo-blood groups A, B and O: Their changes associated with human cancer, Biochim Biophys Acta 1473,247–66 (1999).Google Scholar
  129. 129.
    Davril M, Degroote S, Humbert P, Galabert C, Dumur V, Lafitte JJ, Lamblin G, Roussel P, The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection,Glycobiology 9,311–21 (1999).Google Scholar
  130. 130.
    Kono M, Ohyama Y, Lee YC, Hamamoto T, Kojima N, Tsuji S, Mouse ?-galactoside α2,3-sialyltransferases: Comparison of in vitro substrate specificities and tissue specific expression, Glycobiology 7,469–79 (1997).Google Scholar
  131. 131.
    Lo-Guidice JM, Perini JM, Lafitte JJ, Ducourouble MP, Roussel P, Lamblin G, Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains, J Biol Chem 270,27544–50 (1995).Google Scholar
  132. 132.
    Nishihara S, Hiraga Y, Ikehara Y, Kudo T, Iwasaki H, Morozumi K, Akamatsu S, Tachikawa T, Narimatsu H, Molecular mechanisms of expression of Lewis b antigen and other type I Lewis antigens in human colorectal cancer,Glycobiology 9,607–16 (1999).Google Scholar
  133. 133.
    Degroote S, Lo-Guidice JM, Strecker G, Ducourouble MP, Roussel P, Lamblin G, Characterization of an Nacetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains, J Biol Chem 272, 29493–501 (1997).Google Scholar
  134. 134.
    Degroote S, Ducourouble MP, Roussel P, Lamblin G, Sequential biosynthesis of sulfated and/or sialylated Lewis x determinants by transferases of the human bronchial mucosa,Glycobiology 9, 1199–211 (1999).Google Scholar
  135. 135.
    Uchimura K, El-Fasakhany FM, Hori M, Hemmerich S, Blink SE, Kansas GS, Kanamori A, Kumamoto K, Kannagi R, Muramatsu T, Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression,J Biol Chem 277,3979–84 (2002).Google Scholar
  136. 136.
    Creeth JM, Bridge JL, Horton JR, An interaction between lysozyme and mucus glycoproteins. Implications for densitygradient separations,Biochem J 181,717–24 (1979).Google Scholar
  137. 137.
    Van Seuningen I, Houdret N, Hayem A, Davril M, Strong ionic interactions between mucins and two basic proteins, mucus proteinase inhibitor and lysozyme, in human bronchial secretions, Int J Biochem 24,301–11 (1992).Google Scholar
  138. 138.
    Houdret N, Perini JM, Galabert C, Scharfman A, Humbert P, Lamblin G, Roussel P, The high lipid content of respiratory mucins in cystic fibrosis is related to infection,Biochim Biophys Acta 880, 54–61 (1986).Google Scholar
  139. 139.
    Thornton DJ, Davies JR, Kirkham S, Gautrey A, Khan N, Richardson PS, Sheehan JK, Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: Evidence for an association involving the MUC5B mucin, Glycobiology 11,969–77 (2001).Google Scholar
  140. 140.
    Nadziejko C, Finkelstein I, Inhibition of neutrophil elastase by mucus glycoprotein,Am J Respir Cell Mol Biol 11,103–7 (1994).Google Scholar
  141. 141.
    Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton DM, Paulson JC, Gordon S, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J 10, 1661–9 (1991).Google Scholar
  142. 142.
    Van den Berg TK, Brevé JP, Damoiseaux JG, Döpp EA, Kelm S, Crocker PR, Dijkstra CD, Kraal G, Sialoadhesin on macrophages: Its identification as a lymphocyte adhesion molecule,J Exp Med 176,647–55 (1992).Google Scholar
  143. 143.
    Powell LD, Varki A, The oligosaccharide binding specificities of CD22 ?, a sialic acid-specific lectin of B cells,J Biol Chem 269, 10628–36 (1994).Google Scholar
  144. 144.
    Varki A, Selectins and other mammalian sialic acid-binding lectins,Curr Opin Cell Biol 4, 257–66 (1992).Google Scholar
  145. 145.
    Crottet P, Kim YJ, Varki A, Subsets of sialylated, sulfated mucins of diverse origins are recognized by L-selectin. Lack of evidence for unique oligosaccharide sequences mediating binding, Glycobiology 6,191–208 (1996).Google Scholar
  146. 146.
    Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Izawa D, Tanaka T, Miyasaka M, Lowe JB, Fukuda M, A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34, Immunity 11,79–89 (1999).Google Scholar
  147. 147.
    Ramphal R, Lhermitte M, Filliat M, Roussel P, The binding of anti-pseudomonal antibiotics to macromolecules from cystic fi-brosis sputum,J Antimicrob Chemother 22,483–90 (1988).Google Scholar
  148. 148.
    Vishwanath S, Ramphal R, Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin,Infect Immun 45,197–202 (1984).Google Scholar
  149. 149.
    Vishwanath S, Ramphal R, Tracheobronchial mucin receptor for Pseudomonas aeruginosa: Predominance of amino sugars in binding sites,Infect Immun 48,331–5 (1985).Google Scholar
  150. 150.
    Devaraj N, Sheykhnazari M, Warren WS, Bhavanandan VP,Differential binding of Pseudomonas aeruginosa to normal and cystic fibrosis tracheobronchial mucins,Glycobiology 4,307–16 (1994).Google Scholar
  151. 151.
    Ramphal R, Houdret N, Koo L, Lamblin G, Roussel P, Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis,Infect Immun 57,3066–71 (1989).Google Scholar
  152. 152.
    Reddy MS, Human tracheobronchial mucin: Purification and binding to Pseudomonas aeruginosa,Infect Immun 60,1530–5 (1992).Google Scholar
  153. 153.
    Scharfman A, Van Brussel E, Houdret N, Lamblin G, Roussel P, Interactions between glycoconjugates from human respiratory airways and Pseudomonas aeruginosa,Am J Respir Crit Care Med 154,S163–9 (1996).Google Scholar
  154. 154.
    Sajjan U, Corey M, Karmali MA, Forstner JJ, Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis,J Clin Invest 89, 648–56 (1992).Google Scholar
  155. 155.
    Ramphal R, The role of bacterial adhesion in cystic fibrosis including the staphylococcal aspect, Infection 18,61–4 (1990).Google Scholar
  156. 156.
    Trivier D, Houdret N, Courcol RJ, Lamblin G, Roussel P, Davril M, The binding of surface proteins from Staphylococcus aureus to human bronchial mucins,Eur Respir J 10,804–10 (1997).Google Scholar
  157. 157.
    Kubiet M, Ramphal R, Adhesion of nontypeable Haemophilus influenzae from blood and sputum to human tracheobronchial mucins and lactoferrin,Infect Immun 63,899–902 (1995).Google Scholar
  158. 158.
    Barsum W, Wilson R, Read RC, Rutman A, Todd HC, Houdret N, Roussel P, Cole PJ, Interaction of fimbriated and nonfimbriated strains of unencapsulated Haemophilus influenzae with human respiratory tract mucus in vitro,Eur Respir J 8,709–14 (1995).Google Scholar
  159. 159.
    Couceiro JN, Paulson JC, Baum LG, Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium: The role of the host cell in selection of hemagglutinin receptor specificity,Virus Res 29, 155–65 (1993).Google Scholar
  160. 160.
    Gupta SK, Berk RS, Masinick S, Hazlett LD, Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1,Infect Immun 62,4572–9 (1994).Google Scholar
  161. 161.
    Sheth HB, Lee KK, Wong WY, Srivastava G, Hindsgaul O, Hodges RS, Paranchych W, Irvin RT, The pili of Pseudomonas aeruginosa strains PAKand PAObind specifically to the carbohydrate sequence ?GalNAc(1-4)?Gal found in glycosphingolipids asialo-GM1 and asialo-GM2,Mol Microbiol 11,715–23 (1994).Google Scholar
  162. 162.
    Carnoy C, Scharfman A, Van Brussel E, Lamblin G, Ramphal R, Roussel P, Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins,Infect Immun 62, 1896–900 (1994).Google Scholar
  163. 163.
    Reddy MS, Binding between Pseudomonas aeruginosa adhesins and human salivary, tracheobronchial and nasopharyngeal mucins,Biochem Mol Biol Int 40,403–8 (1996).Google Scholar
  164. 164.
    Scharfman A, Kroczynski H, Carnoy C, Van Brussel E, Lamblin G, Ramphal R, Roussel P, Adhesion of Pseudomonas aeruginosa to respiratory mucins and expression of mucin-binding proteins are increased by limiting iron during growth,Infect Immun 64, 5417–20 (1996).Google Scholar
  165. 165.
    Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R, The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion,Infect Immun 66,1000–7 (1998).Google Scholar
  166. 166.
    Arora SK, Dasgupta N, Lory S, Ramphal R, Identification of two distinct types of flagellar cap proteins, FliD, In Pseudomonas aeruginosa, Infect Immun 68,1474–9 (2000).Google Scholar
  167. 167.
    Ramphal R, Carnoy C, Fievre S, Michalski JC, Houdret N, Lamblin G, Strecker G, Roussel P, Pseudomonas aeruginosa recognizes carbohydrate chains containingtype 1 (Gal?1-3GlcNAc) or type 2 (Gal?1-4GlcNAc) disaccharide units,Infect Immun 59, 700–4 (1991).Google Scholar
  168. 168.
    Rosenstein IJ, Yuen CT, Stoll MS, Feizi T, Differences in the binding specificities of Pseudomonas aeruginosa M35 and Escherichia coli C600 for lipid-linked oligosaccharides with lactose-related core regions,Infect Immun 60,5078–84 (1992).Google Scholar
  169. 169.
    Scharfman A, Degroote S, Beau J, Lamblin G, Roussel P, Mazurier J, Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates,Glycobiology 9,757–64 (1999).Google Scholar
  170. 170.
    Scharfman A, Arora SK, Delmotte P, Van Brussel E, Mazurier J, Ramphal R, Roussel P, Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa, Infect Immun 69,5243–8 (2001).Google Scholar
  171. 171.
    Scharfman A, Delmotte P, Beau J, Lamblin G, Roussel P, Mazurier J, Sialyl-Le(x) and sulfo-sialyl-Le(x) determinants are receptors for P. aeruginosa,Glycoconjugate J 10,735–40 (2000).Google Scholar
  172. 172.
    Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A, Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection,Infect Immun 66,43–51 (1998).Google Scholar
  173. 173.
    Carroll SM, Higa H, Paulson JC, Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins, J Biol Chem 256,8357–63 (1981).Google Scholar
  174. 174.
    Rogers GN, Paulson JC, Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin,Virology 127, 361–73 (1983).Google Scholar
  175. 175.
    Rogers GN, D'souza BL, Receptor binding properties of human and animal influenza virus isolates,Virology 173,317–22 (1989).Google Scholar
  176. 176.
    Rogers GN, Herrler G, Paulson JC, Klenk HD, Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells,J Biol Chem 261, 5947–51 (1986).Google Scholar
  177. 177.
    Welsh MJ, Tsui LC, Boat TF, Beaudet AL, Cystic fibrosis. In The Metabolic and Molecular Bases of Inherited Disease, edited by Scriver CR, Beaudet AL, Sly WS, Valle D (McGraw-Hill Inc. New York, 1995), pp. 3799–876.Google Scholar
  178. 178.
    Zielenski J, Tsui LC, Cystic fibrosis: Genotypic and phenotypic variations.Annu Rev Genet 29,777–807 (1995).Google Scholar
  179. 179.
    Devidas S, Guggino WB, CFTR: Domains, structure, and function, Bioenerg Biomembr 29,443–51 (1997).Google Scholar
  180. 180.
    Cystic Fibrosis Mutation Data Base—http://www.genet.sickkids. Scholar
  181. 181.
    Riordan JR, Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein, Am J Hum Genet 64, 1499–504 (1999).Google Scholar
  182. 182.
    Boucher RC, Human airway ion transport,Am J Respir Crit Care Med 150, 581–93 (1994).Google Scholar
  183. 183.
    Smith JJ, Travis SM, Greenberg EP, Welsh MJ, Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid,Cell 85, 229–36 (1996).Google Scholar
  184. 184.
    Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM, Human ?-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis,Cell 88,553–60 (1997).Google Scholar
  185. 185.
    Knowles MR, Robinson JM, Wood RE, Pue CA, Mentz WM, Wager GC, Gatzy JT, Boucher RC, Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects,J Clin Invest 100,2588–95 (1997).Google Scholar
  186. 186.
    Baconnais S, Tirouvanziam R, Zahm JM, de Bentzmann S, Peault B, Balossier G, Puchelle E, Ion composition and rheology of airway liquid from cystic fibrosis fetal tracheal xenografts,Am J Respir Cell Mol Biol 20,605–11 (1999).Google Scholar
  187. 187.
    Zhang Y, Engelhardt JF, Airway surface fluid volume and Cl content in cystic fibrosis and normal bronchial xenografts,Am J Physiol 276,C469–76 (1999).Google Scholar
  188. 188.
    Matsui H, Davis CW, Tarran R, Boucher RC, Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia.J Clin Invest 105, 1419–27 (2000).Google Scholar
  189. 189.
    Birrer P, McElvaney NG, Rudeberg A, Sommer CW, Liechti-Gallati S, Kraemer R, Hubbard R, Crystal RG, Proteaseantiprotease imbalance in the lungs of children with cystic fi-brosis.Am J Respir Crit Care Med 150,207–13 (1994).Google Scholar
  190. 190.
    Konstan MW, Hilliard KA, Norvell TM, Berger M, Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung diseases suggest ongoing infection and in-flammation.Am J Respir Crit Care Med 150,448–54 (1994).Google Scholar
  191. 191.
    Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, JHilliard JB, Ghnaim H, Berger M, Inflammatory cytokines in cystic fi-brosis lungs,Am J Respir Crit Care Med 152,2111–18 (1995).Google Scholar
  192. 192.
    Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M, Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is down-regulated in cystic fibrosis,Am J Respir Cell Mol Biol 13, 257–61 (1995).Google Scholar
  193. 193.
    van Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T, Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa, J Clin Invest 100,2810–15 (1997).Google Scholar
  194. 194.
    Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B, Wu YJ, Rotstein OD, Kent G, McKerlie C, Forstner J, Downey P, Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr ?/? mice, Infect Immun 69,5138–50 (2001).Google Scholar
  195. 195.
    Scanlin TF, Glick MC, Terminal glycosylation in cystic fibrosis, Biochim Biophys Acta 1455,241–53 (1999).Google Scholar
  196. 196.
    Boat TF, Cheng PW, Iyer R, Carlson DM, Polony I, Human tract secretions: Mucous glycoproteins of nonpurulent tracheobronchial secretions and sputum of patients with bronchitis and cystic fibrosis,Arch Biochem Biophys 177,95–104 (1976).Google Scholar
  197. 197.
    Lamblin G, Lafitte JJ, Lhermitte M, Degand P, Roussel P, Mucins from cystic fibrosis sputum,Mod Probl Paediat 19,153–64 (1977).Google Scholar
  198. 198.
    Chace KV, Flux M, Sachdev GP, Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients, Biochemistry 24, 7334–41 (1985).Google Scholar
  199. 199.
    Carnoy C, Ramphal R, Scharfman A, Houdret N, Lo-Guidice JM, Klein A, Galabert C, Lamblin G, Roussel P, Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa,Am J Respir Cell Mol Biol 9, 323–34 (1993).Google Scholar
  200. 200.
    Frates RCJr, Kaizu TT, Last JA, Mucus glycoproteins secreted by respiratory epithelial tissue from cystic fibrosis patients,Pediatr Res 17, 30–4 (1983).Google Scholar
  201. 201.
    Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC, Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis,J Clin Invest 84,68–72 (1989).Google Scholar
  202. 202.
    Mohapatra NK, Cheng PW, Parker JC, Paradiso AM, Yankaskas JR, Boucher RC, Boat TF, Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial cells,Pediatr Res 38, 42–8 (1995).Google Scholar
  203. 203.
    Mendicino J, Sangadala S, Synthesis of sulfated oligosaccharides by cystic fibrosis trachea epithelial cells,Mol Cell Biochem 201, 141–9 (1999).Google Scholar
  204. 204.
    Zhang Y, Doranz B, Yankaskas JR, Engelhardt JF, Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis, J Clin Invest 96,2997–3004 (1995).Google Scholar
  205. 205.
    Rhim AD, Kothari VA, Park PJ, Mulberg AE, Glick MC, Scanlin TF, Terminal glycosylation of cystic fibrosis airway epithelial cells,Glycoconjugate J 17,385–91 (2000).Google Scholar
  206. 206.
    Dosanjh A, Lencer W, Brown D, Ausiello DA, Stow JL, Heterologous expression of ΔF508 CFTR results in decreased sialylation of membrane glycoconjugates,AmJ Physiol 266,C360–6 (1994).Google Scholar
  207. 207.
    Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, Al-Awqati Q, Defective acidification of intracellular organelles in cystic fi-brosis,Nature 352,70–3 (1991).Google Scholar
  208. 208.
    Barasch J, Al-Awqati Q, Defective acidification of the biosynthetic pathway in cystic fibrosis,J Cell Sci Suppl 17,229–33 (1993).Google Scholar
  209. 209.
    Glick MC, Kothari VA, Liu A, Stoykova LI, Scanlin TF, Activity of fucosyltransferases and altered glycosylation in cystic fibrosis airway epithelial cells,Biochimie 83,743–7 (2001).Google Scholar
  210. 210.
    Seksek O, Biwersi J, Verkman AS,Evidence against defective trans-Golgi acidification in cystic fibrosis,J Biol Chem 271, 15542–8 (1996).Google Scholar
  211. 211.
    Poschet JF, Boucher JC, Tatterson L, Skidmore J, Van Dyke RW, Deretic V, Molecular basis for defective glycosylation Pseudomonas pathogenesis in cystic fibrosis lung,Proc Natl Acad Sci USA 98, 13972–7 (2001).Google Scholar
  212. 212.
    Pasyk EA, Foskett JK, Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes, J Biol Chem 272,7746–51 (1997).Google Scholar
  213. 213.
    Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM, Expression of the cystic fibrosis gene in adult human lung,J Clin Invest 93,737–49 (1994).Google Scholar
  214. 214.
    Jacquot J, Puchelle E, Hinnrasky J, Fuchey C, Bettinger C, Spilmont C, Bonnet N, Dieterle A, Dreyer D, Pavirani A, et al., Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands,Eur Respir J 6,169–76 (1993).Google Scholar
  215. 215.
    Lo-Guidice JM, Merten MD, Lamblin G, Porchet N, Houvenaghel MC, Figarella C, Roussel P, Perini JM, Mucins secreted by a transformed cell line derived from human tracheal gland cells,Biochem J 326,431–7 (1997).Google Scholar
  216. 216.
    Delmotte P, Degroote S, Merten M, Bernigaud A, Van Seuningen I, Figarella C, Roussel P, Perini JM, Influence of culture conditions on the alpha 1,2-fucosyltransferase and MUC gene expression of a transformed cell line MM-39 derived from human tracheal gland cells,Biochimie 83, 749–55 (2001).Google Scholar
  217. 217.
    De Graaf TW, Van der Stelt ME, Anbergen MG, van Dijk W, Inflammation-induced expression of sialyl-Lewis X-containing glycan structures on ?1-acid glycoprotein (orosomucoid) in human sera,J Exp Med 177,657–66 (1993).Google Scholar
  218. 218.
    Havenaar EC, Drenth JPH, Van Ommen ECR, Van Der Meer JWM, van Dijk W, Elevated serum level and altered glycosylation of ?1-acid glycoprotein in hyperimmunoglobulinemia D and periodic fever syndrome: Evidence for persistent inflammation, Clin Immunol Immunopathol 76,279–84 (1995).Google Scholar
  219. 219.
    Majuri ML, Niemela R, Tiisala S, Renkonen O, Renkonen R, Expression and function of α2,3-sialyl-and α1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines: Role in synthesis of E-selectin counter-receptors,Int J Cancer 63,551–9 (1995).Google Scholar
  220. 220.
    Kuninaka S, Yano T, Yokoyama H, Fukuyama Y, Terazaki Y, Uehara T, Kanematsu T, Asoh H, Ichinose Y, Direct influences of pro-inflammatory cytokines (IL-1?, TNF-α, IL-6) on the proliferation and cell-surface antigen expression of cancer cells, Cytokine 12,8–11 (2000).Google Scholar
  221. 221.
    Lukacs NW, Strieter RM, Chensue SW, Widmer M, Kunkel SL, TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation,J Immunol 154,5411–7 (1995).Google Scholar
  222. 222.
    Osika E, Cavaillon JM, Chadelat K, Boule M, Fitting C, Tournier G, Clement A, Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease,Eur Respir J 14, 339–46 (1999).Google Scholar
  223. 223.
    Karpati F, Hjelte FL, Wretlind B, TNF-alpha and IL-8 in consecutive sputum samples from cystic fibrosis patients during antibiotic treatment,Scand J Infect Dis 32,75–9 (2000).Google Scholar
  224. 224.
    Delmotte P, Degroote S, Lafitte JJ, Lamblin G, Perini JM, Roussel P, Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa,J Biol Chem 277, 424–31 (2002).Google Scholar
  225. 225.
    Komiyama K, Habbick BF, Tumber SK, Role of sialic acid in saliva-mediated aggregation of Pseudomonas aeruginosa isolated from cystic fibrosis patients, Infect Immun 55,2364–9 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Geneviève Lamblin
    • 1
    • 2
  • Sophie Degroote
    • 1
    • 2
  • Jean-Marc Perini
    • 1
    • 2
  • Philippe Delmotte
    • 1
    • 2
  • Andrée Scharfman
    • 1
    • 2
  • Monique Davril
    • 1
    • 2
  • Jean-Marc Lo-Guidice
    • 1
    • 2
  • Nicole Houdret
    • 1
    • 2
  • Viviane Dumur
    • 1
    • 2
  • André Klein
    • 1
    • 2
  • Philippe Rousse
    • 1
    • 3
  1. 1.Faculté de MédecineINSERM U 377France
  2. 2.Université de Lille 2Lille CedexFrance
  3. 3.Université de Lille 2Lille CedexFrance

Personalised recommendations