Journal of Insect Behavior

, Volume 11, Issue 1, pp 37–45 | Cite as

Nest Defense Behavior in Colonies from Crosses Between Africanized and European Honey Bees (Apis mellifera L.) (Hymenoptera: Apidae)

  • Gloria DeGrandi-Hoffman
  • Anita Collins
  • Joseph H. Martin
  • Justin O. Schmidt
  • Hayward G. Spangler
Article

Abstract

Honey bee (Apis mellifera L.) colonies with either European or Africanized queens mated to European or Africanized drones alone or in combination were tested for defensive behavior using a breath test. The most defensive colonies were those with European or Africanized queens mated to Africanized drones. In colonies where both European and Africanized patrilines existed, most of the workers participating in nest defense behavior for the first 30 s after a disturbance were of African patrilines. Nest defense behavior appears to be genetically dominant in honey bees.

colony defense Africanized honey bees behavioral genetics patriline reciprocal hybrids subfamily 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adams, J., Rothman, E. D., Kerr, W. E., and Paulino, Z. L. (1977). Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population of Apis mellifera. Genetics 86: 583–596.Google Scholar
  2. Boch, R., and Rothenbuhler, W. C. (1974). Defensive behavior and production of alarm pheromone in honeybees. J. Apic. Res. 13: 217–221.Google Scholar
  3. Burgett, M., and Burikam, I. (1985). Number of adult honey bees (Hymenoptera: Apidae) occupying a comb: A standard for estimating colony populations. J. Econ. Entomol. 78: 1154–1156.Google Scholar
  4. Collins, A. M., and Kubasek, K. J. (1982). Field test of honey bee (Hymenoptera: Apidae) colony defensive behavior. Ann. Entomol. Soc. Am. 75: 383–387.Google Scholar
  5. Collins, A. M., Rinderer, T. E., Harbo, J. R., and Bolten, A. B. (1982). Colony defense by Africanized and European honey bees. Science 218: 72–74.Google Scholar
  6. Collins, A. M., Rinderer, T. E., Harbo, J. R., and Brown, M. A. (1984). Heritabilities and correlations for several characters of the honey bee, Apis mellifera. J. Hered. 75: 135–140.Google Scholar
  7. Collins, A. M., Rinderer, T. E., Tucker, K. W., and Pesante, D. G. (1987). Response to alarm pheromone by European and Africanized honey bees. J. Apic. Res. 26: 217–223.Google Scholar
  8. Collins, A. M., Rinderer, T. E., and Tucker, K. W. (1988). Colony defense of two honey-bee types and their hybrids. I. Natural matings. J. Apic. Res. 27: 137–140.Google Scholar
  9. Free, J. B. (1961). The stimuli releasing the sting response of honeybees. Anim. Behav. 9: 193–196.Google Scholar
  10. Guzman-Novoa, E., and Page, R. E., Jr. (1993). Backcrossing Africanized honey bee queens to European drones reduces colony defensive behavior. Ann. Entomol. Soc. Am. 86: 352–355.Google Scholar
  11. Guzman-Novoa, E., and Page, R. E., Jr. (1994). Genetic dominance and worker interactions affect honeybee colony defense. Behav. Ecol. 5: 91–97.Google Scholar
  12. Laidlaw, H. H. (1977). Instrumental Insemination of Honey Bee Queens, Dadant, Hamilton, IL.Google Scholar
  13. Lecomte, J. (1952). Recherches sur le comportment agressif des ouvrieres d'Apis mellifera. Behaviour 4: 60–66.Google Scholar
  14. Ott, L. (1977). An Introduction to Statistical Methods and Data Analysis, Duxbury Press, North Scituate, MA.Google Scholar
  15. Page, R. E., and Robinson, G. E. (1991). The genetics of the division of labor in honey bee colonies. Adv. Insect Physiol. 23: 117–169.Google Scholar
  16. Rinderer, T. E., Buco, S. M., Rubink, W. L., Daly, H. V., Stelzer, J. A., Riggio, R. M., Baptista, F. C. (1993). Morphometric identification of Africanized and European honey bees using large reference populations. Apidologia 24: 569–585.Google Scholar
  17. Robinson, G. E., and Page, R. E., Jr. (1989). Genetic basis for division of labor in honey bee colonies. In Breed, M. D., and Page, R. E. (eds.), The Genetics of Social Evolution, Westview Press, Boulder, CO, pp. 61–80.Google Scholar
  18. Robinson, G. E., and Page, R. E., Jr. (1995). Genotypic constraints on plasticity for corpse removal in honey bee colonies. Anim. Behav. 49: 867–876.Google Scholar
  19. Schmidt, J. O., and Thoenes, S. C. (1990). Honey bee (Hymenoptera: Apidae) preferences among artificial nest cavities. Ann. Entomol. Soc. Am. 83: 271–274.Google Scholar
  20. Sheppard, W. S., Rinderer, T. E., Mazzoli, J., Stelzer, J. A., and Schimanuki, H. (1991). Gene flow between African-and European-derived honey bee populations in Argentina. Nature (Lond.) 349: 782–784.Google Scholar
  21. Smith, D. R. (1988). Mitochondrial DNA polymorphisms in five Old World subspecies of honey bees and in New World hybrids. In Needham, G. R., Page, R. E., Jr., Delfinado Baker, M., and Bowman, C. E. (eds.), Africanized Honey Bees and Bee Mites, Ellis Horwood, Chichester, UK.Google Scholar
  22. Sokal, R. R., and Rohlf, F. J. (1995). Biometry, W. H. Freeman, New York.Google Scholar
  23. Spangler, H. G., and Sprenkle, D. J. (1997). An instrument for quantifying honey bee defensiveness. Appl. Acoust. 50: 325–332.Google Scholar
  24. Stort, A. C. (1975). Genetic study of aggressiveness of two subspecies of Apis mellifera in Brazil. 2. Time at which the first sting reached a leather ball. J. Apic. Res. 14: 171–175.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Gloria DeGrandi-Hoffman
    • 1
  • Anita Collins
    • 2
  • Joseph H. Martin
    • 1
  • Justin O. Schmidt
    • 1
  • Hayward G. Spangler
    • 1
  1. 1.Carl Hayden Bee Research Center, USDA-ARSTucson
  2. 2.Honey Bee Laboratory, USDA-ARS, BARC-EastBeltsville

Personalised recommendations