Journal of Materials Science

, Volume 37, Issue 22, pp 4783–4791 | Cite as

Microstructural studies of interfacial deformation in painted thermoplastic polyolefins (TPOs)

  • H. Tang
  • D. C. Martin


The interfacial structure and deformation between chlorinated polyolefin (CPO) adhesion promoter and automotive TPO substrates have been characterized with optical, scanning electron, and transmission electron microscopy techniques. The diffusion of rubber phase into the CPO layer was observed and an interphase thickness around 200 nm was obtained from TEM imaging. In some cases, a coherent failure of the adhesion promoter during the paint delamination was observed, which could be explained by the strong interphase formed due to the interfacial diffusion. It was found that baking at 120°C could significantly enhance the swelling of the rubber phase underneath the polypropylene-rich skin layer and the diffusion of the rubber phase into this layer. With decreasing molecular weight of PP homopolymer, the apparent interfacial strength measured by tensile cracking test increased, which was ascribed to the enhanced interfacial diffusion at low molecular weight. The deformation of materials near the interface during the paint delamination process was found to be more extensive in samples with higher interfacial adhesion.


Transmission Electron Microscopy Interfacial Adhesion Skin Layer Interfacial Structure Interfacial Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. RYNTZ, Pro. Org. Coatings. 25 (1994) 73.Google Scholar
  2. 2.
    S. WADDINGTON and D. BRIGGS, Polymer Comm. 32 (1991) 506.Google Scholar
  3. 3.
    T. J. PRATER, S. L. KABERLINE, J. W. HOLUBKA and R. A. RYNTZ, J. Coat. Technol. 68 (1996) 83.Google Scholar
  4. 4.
    E. TOMASETTI, R. LEGRAS, B. HENRI-MAZEAUD and B. NYSTEN, Polymer 41 (2000) 6597.Google Scholar
  5. 5.
    H. R. MORRIS, B. MUNROE, R. A. RYNTZ and P. J. TREADO, Langmuir 14 (1998) 2426.Google Scholar
  6. 6.
    H. R. MORRIS, J. F. TURNER, B. MUNROE, R. A. RYNTZ and P. J. TREADO, ibid. 15 (1998) 2961.Google Scholar
  7. 7.
    E. TOMASETTI, S. VANDORPE, D. DAOUST, T. BOXUS, J. MARCHAND-BRYNAERT, C. POLEUNIS, P. BERTRAND, R. LEGRAS and P. G. ROUXHET, J. Adhesion Sci and Technol. 14 (2000) 779.Google Scholar
  8. 8.
    F. M. MIRABELLA, N. DIOH and C. G. ZIMBA, Polymer Eng. Sci. 40 (2000) 2000.Google Scholar
  9. 9.
    R. A. RYNTZ, Q. XIE and A. C. RAMAMURTHY, J. Coat. Technol. 67 (1995) 45.Google Scholar
  10. 10.
    H.-X. TANG and D. C. MARTIN, Polymer Eng. Sci. 41 (2001) 440.Google Scholar
  11. 11.
    D. MONTEZINOS, B. G. WELLS and J. L. BURNS, J. Polym. Sci.: Polym. Lett. Ed. 23 (1985) 421.Google Scholar
  12. 12.
    R. A. RYNTZ, Prog. Org Coat. 27 (1996) 241.Google Scholar
  13. 13.
    E. BOUCHER, J. P. FOLKERS, H. HERVET, L. LEGER and C. CRETON, Macromolecules 29 (1996) 774.Google Scholar
  14. 14.
    M. D. THOULESS, H. M. JENSEN and E. G. LINIGER, Proc. R. Soc. Lond. A 447 (1994) 271.Google Scholar
  15. 15.
    B.-M. ZHANG NEWBY, M. K. CHAUDHURY and H. R. BROWN, Science 269 (1995) 1407.Google Scholar
  16. 16.
    D. KONDOS and M. MAYO, in Proceedings of SPE Automotive TPO Global Conference (2000) p. 79.Google Scholar
  17. 17.
    E. BOUCHER, J. P. FOLKERS, H. HERVET, L. LEGER and C. CRETON, Macromolecules 29 (1996) 774.Google Scholar
  18. 18.
    A. F. TERZIS, D. N. THEODOROU and A. STROEKS, ibid. 35 (2002) 508.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations