Journal of Chemical Ecology

, Volume 25, Issue 2, pp 331–346

Frugivory and Taste Responses to Fructose and Tannic Acid in a Prosimian Primate and a Didelphid Marsupial

  • B. Simmen
  • B. Josseaume
  • M. Atramentowicz
Article

Abstract

The taste responses to sweet and astringent compounds were investigated in two mammals of similar ecology, by using the classical method of the two-bottle test. The taste threshold for fructose was higher in Microcebus murinus, a prosimian primate, than in Caluromys philander, a didelphid marsupial. The profiles of suprathreshold responses resembled a dissymmetric bell-shaped curve, but the rate of consumption of sweet solutions up to maximal intake increased more rapidly in Microcebus than in Caluromys. Despite showing a photoperiod-synchronized physiology, Microcebus displayed no seasonal variation of the taste threshold and suprathreshold responses. The depressing effect of tanning acid on the ingestion of fructose solutions increased progressively with tannin concentration and was lower as fructose concentration increased. Inhibition thresholds for tannic acid were similar between the two species. The data suggest that adaptation to frugivorous diets is associated with globally similar shaping of the taste responses, even though subtle differences of palatability may account for differences of feeding selectivity.

Discrimination sugar tannin ecological convergence taste threshold seasonality primate Marsupialia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Atramentowicz, M. 1988. La frugivorie opportuniste de trois Marsupiaux Didelphidés de Guyane. Rev. Ecol. (Terre Vie) 43:47-57.Google Scholar
  2. Barton, R. A. 1992. Allometry of food intake in free-ranging anthropoid primates. Folia Primatol. 58:56-59.Google Scholar
  3. Barton, R. A., Whiten, A., Byrne, R. W., and English, M. 1993. Chemical composition of baboon plant foods: Implications for the interpretation of intra-and interspecific differences in diet. Folia Primatol. 61:1-20.Google Scholar
  4. Charles-Dominique, P. 1983. Ecology and social adaptations in didelphid marsupials: Comparison with eutherians of similar ecology, pp. 395-422, in J. F. Eisenberg and D. G. Kleiman (eds.). Advances in the Study of Mammalian Behavior. Special Publication of the American Society of Mammalogists, Washington, D.C.Google Scholar
  5. Critchley, H., and Rolls, E. 1996. Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem. Senses 21:135-145.Google Scholar
  6. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565-581.Google Scholar
  7. Furstenburg, D., and van Hoven, W. 1994. Condensed tannin as anti-defoliate agent against browsing by giraffe (Giraffa camelopardalis) in the Kruger National Park. Comp. Biochem. Physiol. 170A:425-431.Google Scholar
  8. Ganzhorn, J. U. 1988. Food partitioning among Malagasy primates. Oecologia 75:436-450.Google Scholar
  9. Glaser, D. 1979. Gustatory preference behaviour in primates, pp. 51-61, in J. H. A. Kroeze (ed.). Preference Behaviour and Chemoreception. Information Retrieval Ltd., London.Google Scholar
  10. Glaser, D. 1986. Geschmacksforschung bei Primaten. Vierteljahrschr. Naturforsch. Ges. Zurich 131(2):92-110.Google Scholar
  11. Glaser, D., and Hellekant, G. 1977. Verhaltens-und electrophysiologische Experimente über den Geschmackssinn bei Saguinus midas tamarin (Callitrichidae). Folia Primatol. 28:43-51.Google Scholar
  12. Goldstein, J. L., and Swain, T. 1963. Changes in tannins in ripening fruits. Phytochemistry 2:371-383.Google Scholar
  13. Hellekant, G., Hladik, C. M., Dennys, V., Simmen, B., Roberts, T. W., Glaser, D., DuBois, G., and Walters, D. E. 1993a. On the sense of taste in two Malagasy primates (Microcebus murinus and Eulemur mongoz). Chem. Senses 18:307-320.Google Scholar
  14. Hellekant, G., Hladik, C. M., Dennys, V., Simmen, B., Roberts, T. W., and Glaser, D. 1993b. On the relationship between sweet taste and seasonal body weight changes in a primate (Microcebus murinus). Chem. Senses 18:27-33.Google Scholar
  15. Kawamura, Y., Funakoshi, M., Kasahara, Y., and Yamamoto, T. 1969. A neurophysiological study on astringent taste. Jpn. J. Physiol. 19:851-865.Google Scholar
  16. Kosar, E., and Schwartz, G. 1990. Cortical unit responses to chemical stimulation of the oral cavity in the rat. Brain Res. 513:212-224.Google Scholar
  17. Lebreton, P. 1982. Tannins ou alcaloïdes: deux tactiques phytochimiques de dissuasion des herbivores. Rev. Ecol. (Terre Vie) 36:539-572.Google Scholar
  18. Le Magnen, J. 1987. Central processing of sensory information in the control of feeding, pp. 95-128, in D. Otosson (ed.). Progress in Sensory Physiology. Springer-Verlag, Berlin.Google Scholar
  19. Lindroth, R. L., and Batzli, G. O. 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). J. Chem. Ecol. 10:229-244.Google Scholar
  20. Lucas, F., and Bellisle, F. 1987. The measurement of food preferences in humans: do taste-and-spit tests predict consumption? Physiol. Behav. 39:739-743.Google Scholar
  21. Lyman, B., and Green, B. 1990. Oral astringency: Effects of repeated exposure and interactions with sweeteners. Chem. Senses 15:151-164.Google Scholar
  22. Marks, D. L., Swain, T., Goldstein, S., Richard, A., and Leighton, M. 1988. Chemical correlates of rhesus monkey food choice: The influence of hydrolyzable tannins. J. Chem. Ecol. 14:213-235.Google Scholar
  23. Michels, R. R., King, J. E., and Hsiao, S. 1988. Preference differences for sucrose solutions in young and aged squirrel monkeys. Physiol. Behav. 42:53-57.Google Scholar
  24. Moskowitz, H. R., Kluter, R. A., Westerling, J., and Jacobs, H. L. 1974. Sugar sweetness and pleasantness: Evidence for different psychological laws. Science 184:583-585.Google Scholar
  25. Ogawa, H., Yamashita, S., Noma, A., and Sato, M. 1972. Taste responses in the macaque monkey chorda tympani. Physiol. Behav. 9:325-331.Google Scholar
  26. Perret, M. 1979. Seasonal and social determinants of urinary catecholamines in the lesser mouse lemur (Microcebus murinus, Cheirogaleinae, Primates). Comp. Biochem. Physiol. 62:51-60.Google Scholar
  27. Perret, M. 1980. Influence de la Captivité et du Groupement Social sur la Physiologie du Microcèbe (Microcebus murinus. Cheirogalinae, Primates). Thèse Doctorat Etat, University Paris XI, Paris.Google Scholar
  28. Perret, M., and Schilling, A. 1987. Intermale sexual effect elicited by volatile urinary ether extract in Microcebus murinus (Prosimian, Primates). J. Chem. Ecol. 13:495-507.Google Scholar
  29. Peter-Rousseaux, A. 1974. Photoperiod, sexual activity and body weight variations of Microcebus murinus (Miller 1777), pp. 365-373, in R. D. Martin and A. C. Walker (eds.). Prosimian Biology. Duckworth, London.Google Scholar
  30. Pfaffmann, C. 1960. The pleasures of sensation. Psychol. Rev. 67:253-268.Google Scholar
  31. Ramirez, I. 1990. Why do sugars taste good? Neurosc. Biobehav. Rev. 14:125-134.Google Scholar
  32. Richter, C. P., and Campbell, K. H. 1939. Sucrose taste thresholds of rats and humans. Am. J. Physiol. 128:291-297.Google Scholar
  33. Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., and Mautz, W. W. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98-107.Google Scholar
  34. Rolls, E. T., Sienkewicz, Z. J., and Yaxley, S. 1989. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1:53-60.Google Scholar
  35. Schiffman, S. S., Suggs, M., Sostman, A., and Simon, S. 1992. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol. Behav. 51:55-63.Google Scholar
  36. Simmen, B. 1994. Taste discrimination and diet differentiation among New World primates, pp. 150-165, in D. J. Chivers and P. Langer (eds.). The Digestive System in Mammals: Food, Form and Function. Cambridge University Press, Cambridge.Google Scholar
  37. Simmen, B., and Hladik, C. M. 1988. Seasonal variation of taste threshold for sucrose in a prosimian species. Microcebus murinus. Folia Primatol. 51:152-157.Google Scholar
  38. Simmen, B., and Hladik, C. M. 1998. Sweet and bitter taste discrimination in primates: scaling effects across species. Folia Primatol. 69:129-138.Google Scholar
  39. Swain, T. 1979. Tanins and lignins, pp. 657-682, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  40. Vanderweele, D. A., Novin, D., Rezek, M., and Sanderson, J. D. 1974. Duodenal or hepaticportal glucose perfusion: Evidence for duodenally-based satiety. Physiol. Behav. 12:467-473.Google Scholar
  41. Wrangham, R. W., and Waterman, P. G. 1983. Condensed tannins in fruits eaten by chimpanzees. Biotropica 15:217-222.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • B. Simmen
    • 1
  • B. Josseaume
    • 1
  • M. Atramentowicz
    • 2
  1. 1.CNRS/UMR 9935, Laboratoire d'Ecologie GénéraleMuséum National d'Histoire NaturelleBrunoyFrance
  2. 2.CNRS/URA 1183, Laboratoire d'Ecologie GénéraleMuséum National d'Histoire NaturelleBrunoyFrance

Personalised recommendations