Advertisement

Bioleaching of UO22+ ions from a Romanian poor uranium ore

  • Al. Cecal
  • K. Popa
  • M. Craus
  • S. Patachia
  • R. T. Moraru
Article

Abstract

The present paper deals with an experimental study on the bioleaching of a poor uranium ore by means of hydrophytic plants Lemna minor and Riccia fluitans, under various operating conditions. The maximum degree of bioleaching (42%) of the reduced uranium species to U(VI) has been attained for the ore-Lemna minor-alkaline carbonate solution system. The UO22+ ions amount accumulated in the plants is negligible as compared to the dissolved quantity, owing to the ionic competition between uranyl ions and the cations necessary to the mineral nutrition. The X-ray diffraction patterns prove that the uranium species in pyrochlore mineral are completely oxidized to U(VI), while thucolite is only partially turned into UO22+ ions, in the presence of living plants.

Keywords

Inorganic Chemistry Uranium Diffraction Pattern Uranyl Maximum Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. GARCIA Jr., FEMS Microbiol. Rev., 11 (1993) 237.Google Scholar
  2. 2.
    J. A. MUÑOZ, F. GONZALES, A. BALLESTER, M. L. BLASQUEZ, FEMS Microbiol. Rev., 11 (1993) 109.Google Scholar
  3. 3.
    A. J. FRANCIS, C. J. DODGE, Appl. Environ. Microbiol., 59 (1993) 109.Google Scholar
  4. 4.
    C. J. DODGE, A. J. FRANCIS, Environ. Sci. Technol., 28 (1994) 1300.Google Scholar
  5. 5.
    A. J. FRANCIS, C. J. DODGE, J. B. GILLOW, J. E. Cline, J. Radiochim. Acta, 52/53 (1991) 311.Google Scholar
  6. 6.
    A. G. SOWDER, S. B. CLARK, R. A. FJELD, J. Radioanal. Nucl. Chem., 248 (2001) 517.Google Scholar
  7. 7.
    AL. CECAL, D. HUMELNICU, K. POPA, V. RUDIC, A. GULEA, I. PALAMARU, GH. NEMTOI, J. Radioanal. Nucl. Chem., 245 (2000) 427.Google Scholar
  8. 8.
    D. L. SUTTON, W. H. ORNES, J. Environ. Qual., 4 (1975) 367.Google Scholar
  9. 9.
    C. ZARROUK, Contribution à l'étude d'une Cyanophycée. Influence de divers facteurs physiques et chimiques sur la roissance et la photosynthèse de Spirulina maxima (Getch. Et Gardner) Geitler, Ph. D. Thèse ??A. O. 1064, Paris, 1966, p. 153.Google Scholar
  10. 10.
    D. D. HOGARTH, Can. Mineralogist, 6 (1961) 310.Google Scholar
  11. 11.
    V. IANOVICI, V. STIOPOL, E. CONSTANTINESCU, Mineralogy, ed. Didactica si Pedagogica, 1979, p. 239.Google Scholar
  12. 12.
    A. J. FRANCIS, Experientia, 46 (1990) 840.Google Scholar
  13. 13.
    AL. CECAL, K. POPA, I. CARAUS, A. R. IORDAN, I. I. CRACIUN, N. PUICA-MELNICIUC, Anal. St. Univ. Al. I. Cuza-Iasi, 8 (2000) 233.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2002

Authors and Affiliations

  • Al. Cecal
    • 1
  • K. Popa
    • 1
  • M. Craus
    • 2
  • S. Patachia
    • 3
  • R. T. Moraru
    • 1
  1. 1.Faculty of Chemistry“Al. I. Cuza” UniversityIasiRomania
  2. 2.Institute of Technical PhysicsIasiRomania
  3. 3.“Transilvania” Technical University of BrasovRomania

Personalised recommendations