Journal of Chemical Ecology

, Volume 25, Issue 1, pp 31–49

From Chemical to Population Ecology: Infochemical Use in an Evolutionary Context

  • Louise E. M. Vet
Article

Abstract

The marriage of chemistry with ecology has been a productive one, providing a wealth of examples of how chemicals play important roles in the loves and lives of living organisms. At first the marriage may have been a simple and monogamous one with the major scientific aim of making proximate analyses of chemically mediated, individual level interactions. But times have changed and chemical ecology is broadening, embracing different approaches and disciplines. There is, for example, increasing appreciation of variability in the systems under study and an increase in evolutionary thinking. Another promising development is greater recognition of the potential importance of chemically mediated interactions for population dynamics and for structuring communities and species coexistence. The latter is an utterly underexplored area in chemical ecology. The field of chemical ecology of insect parasitoids shows some of these promising developments. Responses of parasitoids to infochemicals are increasingly studied with an integrated approach of mechanism and function. This integration of “how” and “why” questions significantly enhances the evolutionary and ecological understanding of stimulus–response patterns. The future challenge in chemical ecology is to demonstrate how chemically mediated interactions steer ecological and evolutionary processes at all levels of ecological organization. To reach this goal there is a need for interdisciplinary collaboration among chemists and ecologists working at different levels of organization and with different approaches, with other disciplines as partners.

Chemical ecology evolution variation population dynamics community species interactions infochemical semiochemical parasitoid foraging behavior learning phenotypic plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alborn, T., Turlings, T. C. J., Jones, T. H., Steinhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.Google Scholar
  2. Bell, W. J., Kipp, L. R., and Collins, R. D. 1995. The role of chemoorientation in search behavior, pp. 105–152, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman & Hall, New York.Google Scholar
  3. Berenbaum, M. R. 1995. The chemistry of defense: Theory and practice. Proc. Natl. Acad. Sci. U.S.A. 92:2–8.PubMedGoogle Scholar
  4. Bernstein, C., Kacelnik, A., and Krebs, J. R. 1988. Individual decisions and the distribution of predators in a patchy environment. J. Anim. Ecol. 57:1007–1026.Google Scholar
  5. Bernstein, C., Kacelnik, A., and Krebs, J. R. 1991. Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel cost and structure of the environment. J. Anim. Ecol. 60:205–225.Google Scholar
  6. CardÉ, R. T. and Bell, W. J. (eds.). 1995. Chemical Ecology of Insects 2. Chapman & Hall, New York.Google Scholar
  7. Dicke, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 143:465–472.Google Scholar
  8. Dicke, M., and Vet, L. E. M. 1998. Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483–520 in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores between Plants and Predators. Blackwell Science, Oxford.Google Scholar
  9. Dicke, M., Beek, T. A., van, Posthumus, M. A., Ben Dom, N., Bokhoven, H. van, and Groot, A. E. de. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381–396.Google Scholar
  10. Driessen, G., Bernstein, C., van Alphen, J. J. M., and Kacelnik, A. 1995. A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol. 64:117–125.Google Scholar
  11. Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.Google Scholar
  12. Futuyma, D. J. 1986. Evolutionary Biology, 2nd Ed. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  13. Geervliet, J. B. F. 1997. Infochemical use by insect parasitoids in a tritrophic context: Comparison of a generalist and a specialist. PhD dissertation, Wageningen Agricultural University, Wageningen, The Netherlands.Google Scholar
  14. Geervliet, J. B. F., Ariens, S., Dicke, M., and Vet, E. M. 1998. Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae). Biol. Control 11:113–121.Google Scholar
  15. Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey.Google Scholar
  16. Haccou, P., Vlas, S. J. De, Van Alphen, J. J. M., and Visser, M. E. 1991. Information processing by foragers: Effects of intra-patch experience on the leaving tendency of Leptopilina heterotoma. J. Anim. Ecol. 60:93–106.Google Scholar
  17. Hairston, N. G., Smith, F. E., and Slobodkin, L. B. 1960. Community structure, population control, and competition. Am. Nat. 94:421–425.Google Scholar
  18. Hassell, M. P., and May, R. M. 1974. Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43:567–594.Google Scholar
  19. Hedlund, K., Vet, L. E. M., and Dicke, M. 1996. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77:390–398.Google Scholar
  20. Hemerik, L., Driessen, G., and Haccou, P. 1993. Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes (Hartig). J. Anim. Ecol. 62:33–44.Google Scholar
  21. Jaenike, J. and Papaj, D. R. 1992. Behavioral plasticity and patterns of host use by insects, pp. 245–264, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology, An Evolutionary Approach. Chapman & Hall, New York.Google Scholar
  22. Janssen, A., Van Alphen, J. J. M., Sabelis, M. W., and Bakker, K. 1995. Odour-mediated avoidance of competition in Drosophila parasitoids: the ghost of competition. Oikos 73:356–366.Google Scholar
  23. Janssen, A., Pallini, A., Venzon, M., and Sabelis, M. W. 1998. Behaviour and indirect food web interactions among plant inhabiting arthropods. Exp. Appl. Acarol. In press.Google Scholar
  24. Jones, C. G. 1988. What is chemical ecology?. J. Chem. Ecol. 14:727–730.Google Scholar
  25. Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. Chicago University Press, Chicago.Google Scholar
  26. Lewis, W. J., Jones, R. L., Gross, H. R., and Nordlund, D. A. 1976. The role of kairomones and other behavioral chemicals in host finding by parasitic insects. Behav. Biol. 16:267–289.PubMedGoogle Scholar
  27. LÖfstedt, C. 1990. Population variation and genetic control of pheromone communication systems in moths. Entomol. Exp. Appl. 54:199–218.Google Scholar
  28. LÖfstedt, C. 1993. Moth pheromone genetics and evolution. Philos. Trans. R. Soc. B 340:167–177.Google Scholar
  29. Lucas, E., Coderre, D., and Brodeur, J. 1998. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology, 79:1084–1092.Google Scholar
  30. Mattiacci, L., Dicke, M., and Posthumus, M. A. 1995. Beta-glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:2036–2040.PubMedGoogle Scholar
  31. McNeil, J. N. 1991. Behavioral ecology of Pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36:407–430.Google Scholar
  32. McNeil, J. N. 1992. Evolutionary perspectives and insect pest control: An attractive blend for the deployment of semiochemicals in management programmes, pp. 334–351, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.Google Scholar
  33. McNeil, J. N., Delisle, J., and Cusson, M. 1997. Regulation of pheromone production in Lepidoptera: The need for an ecological perspective, pp. 31–41, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.Google Scholar
  34. Murdoch, W. W., and Stewart-Oaten, A. 1989. Aggregation by parasitoids and predators: Effects on equilibrium and stability. Am. Nat. 134:288–310.Google Scholar
  35. Nicholson, A. J. 1933. The balance of animal populations. J. Anim. Ecol. 2:132–178.Google Scholar
  36. Pallini, A., Janssen, A., and Sabelis, M. W. 1997. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 100:179–185.Google Scholar
  37. Papaj, D. R. 1993a. Automatic behavior and the evolution of instinct: Lessons from learning in parasitoids, pp. 243–272, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning: Ecological and Evolutionary Aspects. Chapman & Hall, New York.Google Scholar
  38. Papaj, D. R., 1993b. Afterword: Learning, adaptation and the lessons of O, pp. 374–386, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning: Ecological and Evolutionary Aspects. Chapman & Hall, New York.Google Scholar
  39. Papaj, R. D., and Vet, L. E. M. 1990. Odor learning and foraging success in the parasitoid, Leptopilina heterotoma. J. Chem. Ecol. 16:3137–3150.Google Scholar
  40. Papaj, D. R., Snellen, H., Swaans, K., and Vet, L. E. M. 1994. Unrewarding experiences and their effect on foraging in the parasitic wasp Leptopilina heterotoma (Hymenoptera: Eucoilidae). J. Insect Behav. 7:465–481.Google Scholar
  41. Phelan, P. L. 1997. Genetic and phylogenetics in the evolution of sex pheromones, pp. 563–579, in R. T. Cardé and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman & Hall, New York.Google Scholar
  42. Polis, G. A., and Holt, R. D. 1992. Intraguild predation: the dynamics of complex trophic interactions. TREE 7:151–154.Google Scholar
  43. Polis, G. A., and Strong, D. R. 1996. Food web complexity and community dynamics. Am. Nat. 147:814–846.Google Scholar
  44. Price, P. W. 1991. Evolutionary theory of host and parasitoid interactions. Biol. Control. 1:83–93.Google Scholar
  45. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E., 1980. Interactions among three trophic levels: Influence of plant on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  46. Rausher, M. D. 1992. Natural selection and the evolution of plant-insect interactions, pp. 20–88, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An evolutionary approach. Chapman & Hall, New York.Google Scholar
  47. Roitberg, B. D. 1992. Why an evolutionary perspective? pp. 5–19, in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.Google Scholar
  48. Roitberg, B. D., and Isman, M. B. (eds.). 1992. Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.Google Scholar
  49. Roitberg, B. D., and Mangel, M. 1988. On the evolutionary ecology of marking pheromones. Evol. Ecol. 2:289–315.Google Scholar
  50. Rosenheim, J. A., Wilhoit, L. R., and Armer, C. A. 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449.Google Scholar
  51. Schoonhoven, L. M., Jermy, T. and Van Loon, J. J. A. 1998. Insect-Plant Biology: From Physiology to Evolution. Chapman & Hall, London.Google Scholar
  52. Silverstein, R. M. 1990. Practical use of pheromones and other behavior-modifying compounds: Overview, pp. 1–8, in R. L. Ridgway, R. M. Silverstein, and M. N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  53. Stephens, D. W., and Krebs, J. R. 1986. Foraging Theory. Princeton University Press, Princeton, New Jersey.Google Scholar
  54. Taylor, A. D. 1993. Heterogeneity in host-parasitoid interactions: “Aggregation of risk” and the “CV2 > 1 rule.” TREE 8:400–405.Google Scholar
  55. Tinbergen, N. 1963. On the aims and methods of ethology. Z. Tierpsychol. 20:410–433.Google Scholar
  56. Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J. 1993. Semiochemically mediated foraging behavior in beneficial parasitic insects. Arch. Insect Biochem. Physiol. 22:385–391.Google Scholar
  57. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.Google Scholar
  58. Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51–78, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning. Chapman & Hall, New York.Google Scholar
  59. UchmÁnski, J., and Grimm, V. 1996. Individual-based modelling in ecology: What makes the difference? TREE 11:437–441.Google Scholar
  60. van Alphen, J. J. M., and Visser, M. E. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35:59–79.PubMedGoogle Scholar
  61. Vet, L. E. M. 1996. Parasitoid foraging: The importance of variation in individual behaviour for population dynamics, pp. 245–256, in R. B. Floyd and A. W. Sheppard (eds.). Frontiers of Population Ecology, CSIRO Publishing, Melboume, Australia.Google Scholar
  62. Vet, L. E. M., and van Alphen, J. J. M. 1985. A comparative functional approach to the host detection behaviour of parasitic wasps. I. A. qualitative study on Eucoilidae and Alysiinae. Oikos 44:478–486.Google Scholar
  63. Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  64. Vet, L. E. M., and Janse, C. J. 1984. Fitness of two sibling species of Asobara (Braconidae: Alysiinae), larval parasitoids of Drosophilidae in different microhabitats. Ecol. Entomol. 9:345–354.Google Scholar
  65. Vet, L. E. M., and Papaj, D. R. 1992. Effects of experience on parasitoid movement in odour plumes. Physiol. Entomol. 17:90–96.Google Scholar
  66. Vet, L. E. M., Lewis, W. J., Papaj, D. R., and Lenteren, J. C. van. 1990. A variable-response model for parasitoid foraging behavior. J. Insect Behav. 3:471–490.Google Scholar
  67. Vet, L. E. M., WÄckers, F. L., and Dicke, M. 1991. How to hunt for hiding hosts: The reliability-detectability problem in foraging parasitoids. Neth. J. Zool. 41:202–213.Google Scholar
  68. Vet, L. E. M., Lewis, W. J., and CardÉ, R. T. 1995. Parasitoid foraging and learning, pp. 65–101, in R. T. Cardé and W. J. Bell (eds.), Chemical Ecology of Insects 2. Chapman & Hall, New York.Google Scholar
  69. Vet, L. E. M., De Jong, A. G., Franchi, E., and Papaj, D. R. 1998. The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim. Behav. 55:1271–1279.PubMedGoogle Scholar
  70. Vinson, S. B., 1984. Parasitoid-host relationships, pp. 205–233, in W. J. Bell and R. T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  71. Vos, M., Hemerik, L., and Vet, L. E. M. 1998. Patch exploitation by the parasitoids Cotesia glomerata and Cotesia rubecula in multi-patch environments with different host distributions. J. Anim. Ecol. 67:774–783.Google Scholar
  72. Weisser, W. W., and Houston, A. I. 1993. Host discrimination in parasitic wasps: When is it advantageous? Funct. Ecol. 7:27–39.Google Scholar
  73. Wiskerke, J. S. C., Dicke, M., and Vet, L. E. M. 1993. Larval parasitoid uses aggregation pheromone of adult hosts in foraging behaviour: A solution to the reliability-detectability problem. Oecologia 93:145–148.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Louise E. M. Vet
    • 1
  1. 1.Laboratory of EntomologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations