Advertisement

Hyperfine Interactions

, Volume 138, Issue 1–4, pp 171–174 | Cite as

Low Temperature Hydrogen Antihydrogen Interactions

  • E. A. G. Armour
  • C. W. Chamberlain
Article

Abstract

In view of current interest in the trapping of antihydrogen (\(\bar {\mathcal{H}}\)) atoms at low temperatures [1–3], we have carried out a full four-body variational calculation to determine s-wave elastic phase shifts for hydrogen antihydrogen scattering, using the Kohn Variational Principle. Terms outside the Born–Oppenheimer approximation have been taken into account using the formalism of Kołos and Wolniewicz [4]. As far as we are aware, this is the first time that these terms have been included in an H \(\bar {\mathcal{H}}\) scattering calculation. This is a continuation of earlier work on H–\(\bar {\mathcal{H}}\) interactions [5–7]. Preliminary results differ substantially from those calculated using the Born–Oppenheimer approximation [8–10]. A method is outlined for reducing this discrepancy and taking the rearrangement channel into account.

antihydrogen hydrogen elastic scattering protonium positronium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charlton, M., Eades, J., Horváth, D., Hughes, R. J. and Zimmermann, C., Phys. Rep. 241 (1994), 65.CrossRefADSGoogle Scholar
  2. 2.
    Holzscheiter, M. H. et al., Nucl. Phys. B (Proc. Suppl.) 56A (1997), 338.ADSGoogle Scholar
  3. 3.
    Holzscheiter, M. H. and Charlton, M., Rep. Prog. Phys. 62 (1999), 1.Google Scholar
  4. 4.
    Kołos, W. and Wolniewicz, L., Rev. Mod. Phys. 35 (1963), 473.CrossRefADSGoogle Scholar
  5. 5.
    Armour, E. A. G. and Carr, J. M., Nucl. Instrum. Methods B 143 (1998), 218.CrossRefADSGoogle Scholar
  6. 6.
    Armour, E. A. G., Zeman V. and Carr, J. M., J. Phys. B 31 (1998), L679.CrossRefADSGoogle Scholar
  7. 7.
    Armour, E. A. G. and Zeman, V., Int. J. Quant. Chem. 74 (1999), 645.CrossRefGoogle Scholar
  8. 8.
    Jonsell, S., Exotic states of matter, PhD thesis, Uppsala University, 1999.Google Scholar
  9. 9.
    Froelich, P., Jonsell, S., Saenz, A., Zygelman, B. and Dalgarno, A., Phys. Rev. Lett. 84 (2000), 4577.CrossRefADSGoogle Scholar
  10. 10.
    Jonsell, S., Saenz, A. and Froelich, P., Nuclear Physics A 663 (2000), 995c.CrossRefGoogle Scholar
  11. 11.
    Sinha, P. A. and Ghosh, A. S., Europhys. Lett. 49 (2000), 558.CrossRefADSGoogle Scholar
  12. 12.
    Kołos, W., Morgan, D. L., Schrader, D. M. and Wolniewicz, L., Phys. Rev. A 11 (1975), 1792.CrossRefADSGoogle Scholar
  13. 13.
    Kohn, W., Phys. Rev. 74 (1948), 1763.zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Armour, E. A. G. and Humberston, J. W., Phys. Rep. 204 (1991), 165.CrossRefADSGoogle Scholar
  15. 15.
    Humberston, J. W. and Watts, M. S. T., Hyp. Interact. 89 (1994), 47.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • E. A. G. Armour
    • 1
  • C. W. Chamberlain
    • 2
  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations