Advertisement

Journal of Chemical Ecology

, Volume 25, Issue 4, pp 847–859 | Cite as

Cucurbitacins of Cucumis prophetarum and Cucumis prophetarum

  • M. S. Afifi
  • S. A. Ross
  • M. A. ElSohly
  • Z. E. Naeem
  • F. T. Halaweish
Article

Abstract

Cucurbitacin B, isocucurbitacin B, dihydrocucurbitacin B, cucurbitacin E, dihydrocucurbitacin E, isocucurbitacin D, dihydroisocucurbitacin D, cucurbitacin I, dihydrocucurbitacin I, cucurbitacin Q1, and dihydrocucurbitacin Q1 were identified for the first time as constituents of Cucumis prophetarum L.. Cucurbitacin B, cucurbitacin O, cucurbitacin P, cucurbitacin Q1, dihydrocucurbitacin Q1, isocucurbitacin E, and dihydroisocucurbitacin E also were identified as constituents of C. prophetarum Jusl. ssp. Dissectus. Isocucurbitacin E and dihydroisocucurbitacin E were isolated for the first time in nature. The chemical structures were determined with extensive spectroscopic analysis including 2D NMR, 1H NMR, 13C NMR, correlated spectroscopy (COSY), heteronuclear chemical shift correlation (HETCOR), attached proton test (APT), and distortionless enhancement by polarization transfer (DEPT).

Cucurbitacins isocucurbitacin dihydrocucurbitacin Cucumis prophetarum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Akihisha, T., Shimizu, N., Ghosh, P., Thakur, S., Rosenstein, F. U., Tamura, T., and Matsumato, T. 1987. Sterols of the Cucurbitaceae. Phytochemistry 26:1693–1700.Google Scholar
  2. Atta-Ur-Rahman, A., Khan, A. V., and Zehra, F. 1973. Isolation and structure of cucurbitacin Q1. Phytochemistry 12:2741–2745.Google Scholar
  3. Bar-Nun, N., and Mayer, A. M. 1989. Cucurbitacins—repressor of induction of laccase formation. Phytochemistry 28:1369–1371.Google Scholar
  4. Cardellina, J. H., II, Gustafson, K. R., Beutler, J. A., McKee, C., Hallock, Y. F., Fuller, R. W., and Boyd, M. R. 1990. Human medicinal agents from plants, pp. 218–227, in A. D. Kinghorn and M. F. Balandrin (eds.). American Chemical Society, Washington, D.C.Google Scholar
  5. Che, C., Fang, X., Phoebe, C. H., Jr., Kinghorn, D. A., and Farnsworth, N. R. 1985. High-Field 1H-NMR spectral analysis of some cucurbitacins. J. Nat. Prod. 48:429–434.PubMedGoogle Scholar
  6. Fuller, R. W., Cardellina, J. H., II, Cragg, G. M., and Body, M. R. 1994. Cucurbitacin: Differential cytotoxicity, dereplication and first isolation from Gonystylus keithii. J. Nat. Prod. 57:1442–1445.PubMedGoogle Scholar
  7. Garg, V. K., and Nes, W. R. 1986. Occurrence of delta 5-sterols in plants producing predominantly delta 7-sterols: Studies on the sterol compositions of six Cucurbitaceae seeds. Phytochemistry 25:2591–2595.Google Scholar
  8. Halaweish, F. 1993. Cucurbitacins from Cucurbita texana: Evidence for the role of isocucurbitacins. J. Chem. Ecol. 19:29–37.Google Scholar
  9. Halaweish, F. T. 1987. Cucurbitacins in tissue cultures of Bryonia dioica Jacq., PhD thesis. University of Wales, Cardiff, UK.Google Scholar
  10. Hylands, P. J., and Maged, M. S. 1986. Cucurbitacins from Acanthosicyos horridus. Phytochemistry 25:1681–1684.Google Scholar
  11. Jacobs, H., Singh, T., Reynolds, W. F., and McLean, S. 1990. Isolation and 13C-NMR assignments of cucurbitacins from Cayponia angustiloba, C. racemosa and Gurania subumbellata. J. Nat. Prod 53:1600–1605.Google Scholar
  12. Lance, D. R. 1988. Potential of 8-methyl-2-decyl propanoate and plant-derived volatile for attracting corn rootworm beetles (Cleoptera: Chrysomelidae) to toxic baits. J. Econ. Entomol. 81:1085–1092.Google Scholar
  13. Lance, D. R., and Sutter, G. R. 1990. Field-cage and laboratory evaluations of semiochemical-based baits for managing western corn rootworm (Cleoptera: Chrysomelidae). J. Econ. Entomol. 83:1985–1990.Google Scholar
  14. Lavie, D., and Glotter, E. 1971. The cucurbitacins, a group of tetracyclic triterpenes. Fortschr. Chem. Org. Naturst. 29:307–356.PubMedGoogle Scholar
  15. Metcalf, R. L. 1994. Chemical ecology of diabroticites, pp. 153–169, in M. Cox and E. Petitpierre (eds.). Novel Aspects of the Biology of Chrysomelidae. Kluwer, Dordrecht.Google Scholar
  16. Metcalf, R. L., Ferguson, J. E., Lampman, R., and Anderson, J. F. 1987. Dry cucurbitacin-containing baits for controlling diabroticites beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol. 80:870–875.Google Scholar
  17. Miro, M. 1995. Cucurbitacins and their pharmacological effects. Phytother. Res. 9:59–168.Google Scholar
  18. Musza, L. L., Speight, P., McElhiney, S., Brown, C. T., Gillum, A. M., Cooper, R., and Killer, L. M. 1994. Cucurbitacins: Cell adhesion inhibitor from Conobea scoparioides. J. Nat. Prod 57:1498–1502.PubMedGoogle Scholar
  19. Nes, W. D., Norton, R. A., and Benson, N. M. 1992. Carbon-13 NMR studies on sitosterols biosynthesized from [13C]mevalonate. Phytochemistry 31:805–811.Google Scholar
  20. Stuppner, H., Muller, E. P., and Wagner, H. 1991. Cucurbitacins from Picrorhiza kurrooa. Phytochemistry 30:305–310.Google Scholar
  21. Tallamy, D. T., Whitting, D. P., Deforio, F., Fontaine, D. A., Gprski, P. M., and Gothro, P. 1997. The effect of sequestered cucurbitacins on the pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle egg and larvae (Coleoptera: Chrysomelidae). Environ. Entomol. In press.Google Scholar
  22. Velde, V. V., and Lavie, D. 1983. 13C-NMR spectroscopy of cucurbitacins. Tetrahedron 39:317–321.Google Scholar
  23. Weissling, T. J., Meinke, L. J., Trimnell, D., and Golgen, K. L. 1989. Behavioral responses of Diabrotica adult to plant-derived semiochemicals encapsulated in a starch borate matrix. Entomol. Exp. Appl. 53:219–228.Google Scholar
  24. Zoretskii, Z. V. 1976. Mass Spectroscopy of Steroids. Halsted Press, New York, pp. 94–109.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • M. S. Afifi
    • 1
  • S. A. Ross
    • 2
  • M. A. ElSohly
    • 2
  • Z. E. Naeem
    • 1
  • F. T. Halaweish
    • 1
  1. 1.Department of Pharmacognosy, Faculty of PharmacyUniversity of MansouraMansouraEgypt
  2. 2.National Center for the Development of Natural Products, Research Institute of Pharmaceutical Sciences. Department of Pharmacognosy, School of PharmacyUniversity of MississippiUniversity

Personalised recommendations