Statistics and Computing

, Volume 12, Issue 4, pp 331–338 | Cite as

A Semi-Parametric Quantile Function Estimator for Use in Bootstrap Estimation Procedures

  • Alan D. Hutson


In this note we develop a new quantile function estimator called the tail extrapolation quantile function estimator. The estimator behaves asymptotically exactly the same as the standard linear interpolation estimator. For finite samples there is small correction towards estimating the extreme quantiles. We illustrate that by employing this new estimator we can greatly improve the coverage probabilities of the standard bootstrap percentile confidence intervals. The method does not reqiure complicated calculations and hence it should appeal to the statistical practitioner.

order statistics quantile function resampling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carpenter J. and Bithell J. 2000. Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians. Statistics in Medicine 19: 1141-1164.Google Scholar
  2. Davison A.C. and Hinkley D.V. 1997. Bootstrap Methods and Their Applications. Cambridge University Press, New York.Google Scholar
  3. Efron B. and Tibshirani R. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York.Google Scholar
  4. Gamero M.D., Garcia J.M., and Reyes A.M. 1998. Bootstrapping statistical functionals. Statistics & Probability Letters 39: 229-236.Google Scholar
  5. Hutson A.D. 1999. Calculating nonparametric confidence intervals for quantiles using fractional order statistics. Journal of Applied Statistics 26: 343-353.Google Scholar
  6. Hutson A.D. and Ernst M.D. 2000. The exact bootstrap mean and variance of an L-estimator. Journal of the Royal Statistical Society B 62: 89-94.Google Scholar
  7. Lee S.M.S. 1994. Optimal choice between parametric and non-parametric bootstrap estimates. Math. Proc. Camb. Phil. Soc. 115: 335-363.Google Scholar
  8. Mudholkar G.S. and Hutson A.D. 1997. Asymmetric quasimedians: Remarks on an anomaly. Statistics and Probability Letters 32: 261-268.Google Scholar
  9. Mudholkar G.S., Kollia G.D., Lin C.T., and Patel K.R. 1991. A graphical procedure for comparing goodness-of-fit tests. Journal of the Royal Statistical Society B 53: 221-232.Google Scholar
  10. Polansky A.M. 1999. Upper bounds on the true coverage of bootstrap percentile type confidence intervals. The American Statistician 53: 362-369.Google Scholar
  11. Schucany W.R. 1972. Order statistics simulation. Journal of Statistical Computation and Simulation 1: 281-286.Google Scholar
  12. Shao J. and Tu D. 1995. The Jackknife and Bootstrap. Springer-Verlag, New York.Google Scholar
  13. Sheather S.J. and Marron J.S. 1990. Kernel quantile estimators. Journal of the American Statistical Association 85: 410-416.Google Scholar
  14. Silverman B.W. and Young G.A. 1987. To bootstrap: To smooth or not to smooth? Biometrika 74: 469-479.Google Scholar
  15. Stigler S.M. 1977. Do robust estimators work with real data? The Annals of Statistics 5: 1055-1098.Google Scholar
  16. Van Zwet W.R. 1964. Convex Transformation of Random Variables. Mathematical Centre Tracts, Amsterdam.Google Scholar
  17. Young G.A. 1994. Bootstrap: More than a stab in the dark. Statistical Science 9: 382-415.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alan D. Hutson

There are no affiliations available

Personalised recommendations