Journal of Chemical Ecology

, Volume 24, Issue 12, pp 2021–2037 | Cite as

Task-Related Differences in the Cuticular Hydrocarbon Composition of Harvester Ants, Pogonomyrmex barbatus

  • Diane Wagner
  • Mark J. F. Brown
  • Pierre Broun
  • William Cuevas
  • Lincoln E. Moses
  • Dennis L. Chao
  • Deborah M. Gordon


Colonies of the harvester ant, Pogonomyrmex barbatus, perform a variety of tasks. The behavior of an individual worker appears to depend on its recent history of brief contacts with ants of the same and other task groups. The purpose of this study was to determine whether task groups differ in cuticular hydrocarbon composition. We compared the cuticular hydrocarbon composition of ants collected under natural conditions as they performed one of three tasks: patrolling (locating food sources), foraging, or nest maintenance. Task groups differed significantly in the relative proportions of classes of hydrocarbon compounds, as well as in individual compounds. Relative to nest maintenance workers, foragers and patrollers had a higher proportion of straight-chain alkanes relative to monomethylalkanes, dimethylalkanes, and alkenes. There was no significant difference in the chain length of n-alkanes among the task groups. Foragers did not differ in hydrocarbon composition from patrollers. Colonies differed significantly from one another in hydrocarbon composition, but task groups differed in consistent ways from colony to colony, suggesting that the mechanism responsible for task-related hydrocarbon composition was the same in all colonies. P. barbatus workers switch tasks during their lifetimes, suggesting that cuticular hydrocarbon composition changes during adulthood as well. Nest maintenance workers are probably younger than foragers and patrollers and perform very little of their work outside of the nest. Task-related hydrocarbon differences detected here may be associated with worker age, and/or the abiotic characteristics (temperature, humidity, and ultraviolet light) of the interior and exterior work environments.

Cuticular hydrocarbons Formicidae Pogonomyrmex barbatus task allocation n-alkanes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BagnÈres, A. G., Killian, A., Clément, J. L., and Lange, C. 1991. Interspecific recognition among termites of the genus Reticulitermes: Evidence for a role for the cuticular hydrocarbons. J. Chem. Ecol. 17:2397–2420.Google Scholar
  2. Blomquist, G. J., and Jackson, L. L. 1973. Incorporation of labelled dietary n–alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes. J. Insect Physiol. 19:1639–1647.Google Scholar
  3. Bonavita–Cougourdan, A., ClÉment, J. L., and Lange, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22:1–10.Google Scholar
  4. Bonavita–Cougourdan, A., ClÉment, J. L., and Proveda, A. 1989. Les hydrocarbures et les processus de reconnaissance chez les Fourmis: Le code d'information complexe de Camponotus vagus. Actes Coll. Insectes Soc. 6:273–280.Google Scholar
  5. Bonavita–Cougourdan, A., ClÉment, J. L., and Lange, C. 1993. Functional subcaste discrimination (foragers and brood–tenders) in the ant Camponotus vagus Scop.: Polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461–1477.Google Scholar
  6. Dahbi, A., Cerda, X., Hefetz, A., and Lenoir, A. 1996. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22:2173–2186.Google Scholar
  7. de Renobales, M., and Blomquist, G. J. 1983. A developmental study of the composition and biosynthesis of the cuticular hydrocarbons of Trichoplusia ni (Lepidoptera: Noctuidae). Insect Biochem. 13:493.Google Scholar
  8. Gamboa, G. J., Grudzien, T. A., Espelie, K. E., and Bura, E. A. 1996. Kin recognition pheromones in social wasps: Combining chemical and behavioural evidence. Anim. Behav. 51:625–629.Google Scholar
  9. Gibbs, A. 1995. Physical properties of insect curticular hydrocarbons: Model mixtures and lipid interactions. Comp. Biochem. Physiol. 112B:667–672.Google Scholar
  10. Gibbs, A., and Mousseau, T. A. 1994. Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes): Effects of lipid composition on biophysical properties. Physiol. Zool. 67:1523–1543.Google Scholar
  11. Gibbs, A., and Pomonis, J. G. 1995. Physical propertie of insect cuticular hydrocarbons: The effects of chain length, methyl–branching and unsaturation. Comp. Biochem. Physiol. 112B:243–249.Google Scholar
  12. Gibbs, A. G. 1998. The role of lipid physical properties in lipid barriers. Am. Zool. 38:268–279.Google Scholar
  13. Gibbs, A. G., Louie, A. K., and Ayala, J. A. 1998. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial? J. Exp. Biol. 201:71–80.Google Scholar
  14. Gordon, D. M. 1986. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34:1402–1419.Google Scholar
  15. Gordon, D. M. 1987. Group–level dynamics in harvester ants: young colonies and the role of patrolling. Anim. Behav. 35:833–843.Google Scholar
  16. Gordon, D. M. 1989. Dynamics of task switching in harvester ants. Anim. Behav. 38:194–204.Google Scholar
  17. Gordon, D. M. 1996. The organization of work in social insect colonies. Nature 380:121–124.Google Scholar
  18. Hadley, N. F. 1977. Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: Seasonal and acclimatory effects on composition. Insect Biochem. 7:277–283.Google Scholar
  19. Hadley, N. F. 1978. Cuticular permeability of desert tenebrionid beetles: Correlations with epicuticular hydrocarbon composition. Insect Biochem. 8:17–22.Google Scholar
  20. Hadley, N. F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego.Google Scholar
  21. Hadley, N. F., and Schultz, T. D. 1987. Water loss in three species of tiger beetles (Cicindela): Correlations with epicuticular hydrocarbons. J. Insect Physiol. 33:677–682.Google Scholar
  22. Hand, D. J. 1981. Discrimination and Classification, John Wiley & Sons, Chichester, UK.Google Scholar
  23. Haverty, M. I., Grace, J. K., Nelson, L. J., and Yamamoto, R. T. 1996. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22:1813–1834.Google Scholar
  24. HÖlldobler, B., and Wilson, E. O. 1990. The Ants, Belknap, Harvard University Press, Cambridge.Google Scholar
  25. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226, in W. Stanley–Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.Google Scholar
  26. Howard, R. W., McDaniel, C. A., Nelson, D. R., Blomquist, G. J., Gelbaum, L. T., and Zalkow, L. H. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species and caste–recognition cues. J. Chem. Ecol. 8:1227–1239.Google Scholar
  27. Jackson, L. L., and Blomquist, G. J. 1976. Insect waxes, pp. 201–223, in P. E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam.Google Scholar
  28. Juarez, M. P., and Brenner, R. R. 1985. The epicuticular lipids of Triatoma infestans—II. Hydrocarbon dynamics. Comp. Biochem. Physiol. 82:793–803.Google Scholar
  29. Lavine, B. K., Vander Meer, R. K., Morel, L., Gunderson, R. W., Hwa Han, J., and Stine, A. 1990. False color data imaging: A new pattern recognition technique for analyzing chromatographic profile data. Microchem. J. 41:288–295.Google Scholar
  30. Lockey, K. H. 1976. Cuticular hydrocarbons of Locusta, Schistocerca and Periplaneta, and their role in waterproofing. Insect Biochem. 6:457–472.Google Scholar
  31. MacKay, W. P. 1983. Stratification of workers in harvester ant nests (Hymenoptera: Formicidae). J. Kans. Entomol. Soc. 56:538–542.Google Scholar
  32. Nelson, D. R., Fatland, C. L., Howard, R. W., McDaniel, C. A., and Blomquist, F. J. 1980. Re–analysis of the cuticular methylalkanes of Solenopsis invicta and S. richteri. Insect Biochem. 10:409–418.Google Scholar
  33. Nowbahari, E., Lenoir, A., ClÉment, J. L., Lange, C., BagnÈres, A. G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.Google Scholar
  34. Panel on Discriminant Analysis and Clustering. 1989. Discriminant analysis and clustering. Stat. Sci. 4:34–69.Google Scholar
  35. Provost, E., Riviere, G., Roux, M., Morgan, E. D., and BagnÈres, A. G. 1993. Change in the chemical signature of the ant Leptothorax lichtensteini Bondroit with time. Insect Biochem. Mol. Biol. 23:945–957.Google Scholar
  36. Selvin, F. 1995. Practical Biostatistical Methods. Duxbury Press, Wadsorth Publ., Belmont, California.Google Scholar
  37. Soroker, V., Vienne, C., and Hefetz, A. 1995. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenopter: Formicidae). J. Chem. Ecol. 21:365–378.Google Scholar
  38. Toolson, E. C. 1982. Effects of rearing temperature on cuticle permeability and epicuticular composition in Drosphila pseudoobscura. J. Exp. Zool. 222:249–253.Google Scholar
  39. Toolson, E. C., and Hadley, N. F. 1977. Cuticular permeability and epicuticular lipid composition in two Arizona vejovid scorpions. Physiol. Zool. 50:323–330.Google Scholar
  40. Toolson, E. C., White, T. R., and Glaunsinger, W. S. 1979. Electron paramagnetic spectroscopy of spin–labelled cuticle of Centruroides sculpturatus (Scorpiones: Buthidae): Correlation with thermal effects on cuticular permeability. J. Insect Physiol. 129:319–325.Google Scholar
  41. Wilson, E. O. 1971. The Insect Societies. Belknap Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Diane Wagner
    • 1
  • Mark J. F. Brown
    • 1
  • Pierre Broun
    • 2
  • William Cuevas
    • 3
  • Lincoln E. Moses
    • 4
  • Dennis L. Chao
    • 5
  • Deborah M. Gordon
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanford
  2. 2.Department of Plant BiologyCarnegie Institution of WashingtonStanford
  3. 3.Genencor International, IncPalo Alto
  4. 4.Division of BiostatisticsStanford Medical SchoolStanford
  5. 5.Epson Palo Alto LaboratoryPalo Alto

Personalised recommendations