Journal of Sol-Gel Science and Technology

, Volume 26, Issue 1–3, pp 891–896 | Cite as

Optical Nanocomposite Planar Waveguides Doped with Rare-Earth and Noble Metal Elements

  • Rui M. Almeida
  • Ana C. Marques
  • Maurizio Ferrari


The present paper is focused on multilayer Er3+-doped silica-titania planar waveguides, co-doped with silver, which were prepared by spin-coating on silica glass, or buffered single crystal silicon substrates. The single layer thickness (∼0.4 μm) and refractive index (∼1.60–1.63) were measured by spectroscopic ellipsometry at 715 nm. The thickness of the waveguides (measured by mechanical profilometry) was ∼1 μm and their optical propagation losses were measured at different laser wavelengths (488 nm, 514 nm and 633 nm), exhibiting an approximately Rayleigh-like behavior. The thermal precipitation of silver nanocrystallites was achieved, both in air and under a controlled atmosphere (dry nitrogen) and these were characterized by visible absorption spectroscopy, which clearly showed the development of a plasmon absorption band near 415 nm, by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The Er3+ metastable level lifetimes for the emission at ca. 1.54 μm were found to be ca. 4–6 ms, for Er3+ concentrations varying between 0.2–2.0 mol% (or ∼(0.4–4.4) × 1020 ions/cm3), but no significant variation was observed with the Ag concentration added (up to 2.5 mol%).

sol-gel planar waveguides silver nanoparticles Er doping fluorescence lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Almeida and H.C. Vasconcelos, in Sol-Gel and Polymer Photonic Devices, Proc. SPIE CR-68, edited by M.P. Andrews and I.S. Najafi (1997), p. 172.Google Scholar
  2. 2.
    Rui M. Almeida, Xin Min Du, Denis Barbier, and Xavier Orignac, J. Sol-Gel Sci. Technol. 14, 209 (1999).Google Scholar
  3. 3.
    X. Orignac, D. Barbier, O. McCarthy, E. Yeatman, and R.M. Almeida, Optical Materials 12, 1 (1999).Google Scholar
  4. 4.
    R.M. Almeida, J. Non-Crystalline Solids 259, 176 (1999).Google Scholar
  5. 5.
    O.L. Malta, P.A. Santa-Cruz, G.F. de Sá, and F. Auzel, J. Luminescence 33, 261 (1985).Google Scholar
  6. 6.
    T. Hayakawa, S.T. Selvan, and M. Nogami, Appl. Phys. Lett. 74, 1513 (1999).Google Scholar
  7. 7.
    O.L. Malta and M.A. Couto dos Santos, Chem. Phys. Lett. 174, 13 (1990).Google Scholar
  8. 8.
    M. Mennig, J. Spanhel, H. Schmidt, and S. Bertholz, J. Non-Crystalline Solids 147, 326 (1992).Google Scholar
  9. 9.
    G. De, A. Licciulli, C. Massaro, L. Tapfer, M. Catalano, G. Battaglin, C. Meneghini, and P. Mazzoldi, J. Non-Crystalline Solids 194, 225 (1996).Google Scholar
  10. 10.
    H. Kozuka, G. Zhao, and S. Sakka, J. Sol-Gel Sci. Technol. 2, 741 (1994).Google Scholar
  11. 11.
    R. Krasnaski, S. Yamamura, and J.K. Thomas, Langmuir 7, 2881 (1991).Google Scholar
  12. 12.
    G.W. Arnold and J.A. Borders, J. Appl. Phys. 48, 1488 (1977).Google Scholar
  13. 13.
    G.W. Arnold, J. Appl. Phys. 46, 4466 (1975).Google Scholar
  14. 14.
    Rui M. Almeida, Paulo J. Morais, and H. Cristina Vasconcelos, Proc. SPIE 3136, 296 (1997).Google Scholar
  15. 15.
    Tamil Selvan, Tomokatsu Hayakawa, and Masayuki Nogami, J. Phys. Chem. B 103, 7064 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rui M. Almeida
  • Ana C. Marques
  • Maurizio Ferrari

There are no affiliations available

Personalised recommendations