Advertisement

Matrix Cubic Splines for Progressive 3D Imaging

  • E. Defez
  • J. Villanueva-Oller
  • R.J. Villanueva
  • A. Law
Article

Abstract

Mathematical theory of matrix cubic splines is introduced, then adapted for progressive rendering of images. 2D subsets of a 3D digital object are transmitted progressively under some ordering scheme, and subsequent reconstructions using the matrix cubic spline algorithm provide an evolving 3D rendering. The process can be an effective tool for browsing three dimensional objects, and effectiveness is illustrated with a test data set consisting of 93 CT slices of a human head. The procedure has been implemented on a single processor PC system, to provide a platform for full 3D experimentation; performance is discussed. A web address for the complete, documented Mathematica code is given.

progressive 3D rendering progressive transmission of images matrix cubic splines matrix polynomial reconstructions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions, Birkhäuser, 1990.Google Scholar
  2. 2.
    E. Defez, A. Hervás, A.G. Law, J. Villanueva-Oller, and R.J. Villanueva, “Progressive transmission of images: PC-based computations using orthogonal matrix polynomials”, Mathematical and Computer Modelling Vol. 32 pp. 1125-1140, (2000).Google Scholar
  3. 3.
    G.H. Golub and C.F. van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MA., 1989.Google Scholar
  4. 4.
    R.C. González and R.E. Woods, Digital Image Processing, Addison-Wesley, New York, 1993.Google Scholar
  5. 5.
    D. Kahaner, C. Moler, and S. Nash, Numerical methods and software, Prentice-Hall, New Jersey, 1989.Google Scholar
  6. 6.
    D.C Kay and J.R. Levin, Graphics file formats, Windcrest/ MCGraw-Hill, 1995.Google Scholar
  7. 7.
    Y.-S. Kim and W.-Y. Kim, “Reversible decorrelation method for progressive transmission of 3D medical image”, IEEE Trans. Medical Imaging, Vol. 17, No. 3, pp. 383-394, 1998.Google Scholar
  8. 8.
    E. Kofidis, N. Kolokotronis, A. Vassilarakou, S. Theodoridis and D. Cavouras, “Wavelet-based medical image compression”, Future Generation Computer Systems, Vol. 15, pp. 223-243, 1999.Google Scholar
  9. 9.
    T. Lehmann, C. Gönner, and K. Spitzer, “Interpolation Methods in Medical Image Processing”, IEEE Transactions on Medical Image Processing, Vol. 18, No. 11, pp. 1049-1075, 1999.Google Scholar
  10. 10.
    S.G Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 11, pp. 674-693, July 1989.Google Scholar
  11. 11.
    M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover, New York, 1964.Google Scholar
  12. 12.
    T. Sigitani, Y. Iiguni, and H. Maeda, “Progressive crosssection display of 3D medical images”, Phys. Med. Biol. Vol. 44, No. 6, pp. 1565-1577, June 1999.Google Scholar
  13. 13.
    W. Schroeder and K. Martin, The VTK user's guide, Kitware Inc, 1999.Google Scholar
  14. 14.
    W. Schroeder, K. Martin, and B. Lorensen, The visualization toolkit. An object-oriented approach to graphics, Prentice-Hall, 1997.Google Scholar
  15. 15.
    E.J Stollnitz, T.D DeRose, and D.H. Salesin, “Wavelets for Computer Graphics: A Primer, Part I”, IEEE Computer Graphics and Applications, Vol. 15, No. 3, pp. 76-84, May 1995.Google Scholar
  16. 16.
    K. Tzou, “Progressive image transmission: A review and comparison of techniques”, Opt. Eng., Vol. 26, pp. 581-589, July 1987.Google Scholar
  17. 17.
    M. Unser, “A perfect fit for signal and image processing”, IEEE Signal Processing Magazine, Vol. 16, No. 6, pp. 22-38, 1999.Google Scholar
  18. 18.
    W. Wrazidlo, H.J. Brambs, W. Lederer, S. Schneider, B. Geiger, and C. Fischer, “An alternative method of threedimensional reconstruction from two-dimensional CT and MR data sets”, Med. Biol. Eng. Comput. Vol. 38, No. 2, pp. 140-149, Mar. 2000.Google Scholar
  19. 19.
    S. Wolfram, The Mathematica Book, Wolfram Media Inc., 1996.Google Scholar
  20. 20.
    http://www.scriptics.comGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • E. Defez
    • 1
  • J. Villanueva-Oller
    • 1
  • R.J. Villanueva
    • 1
  • A. Law
    • 2
  1. 1.Universidad Politécnica de ValenciaValenciaSpain
  2. 2.University of WaterlooWaterloo, OntarioCanada

Personalised recommendations