Advertisement

Factor Analysis of Scales Composed of Binary Items: Illustration with the Maudsley Obsessional Compulsive Inventory

  • Carol M. Woods
Article

Abstract

It is well known that traditional factor analytic methods are designed for use with continuous data, and suboptimal for items with 2 response options (i.e., binary items). Nevertheless, traditional methods have been employed in all previous assessment of the dimensionality of the Maudsley Obsessional Compulsive Inventory (MOCI), a true/false measure of obsessive–compulsive symptoms ( R. J. Hodgson &; S. Rachman, 1977). The aim of this paper is to illustrate 2 techniques that are more suitable for factor-analyzing binary items than traditional methods, through application to the MOCI (n = 1,080). Computer files for use with the TESTFACT (D. Wilson, R. L. Wood, &; R. Gibbons, 1991 ) and Mplus (Muthén &; Muthén, 1998) computer programs are provided. Results from an inappropriately applied principal axis factor analysis are presented for comparison, and factor structures, loadings, and interfactor correlations are compared across methods.

factor analysis MOCI categorical IRT WLS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Avila-Espada, A. (1989). Contribution to the evaluation of obsessions and compulsions: Spanish adaptation of the Leyton Obsessional Inventory and the Maudsley Obsesssional Compulsive Questionnaire. Psiquis: Revista de Psiquiatria, Psicologia y Psicosomatica, 7, 66–74.Google Scholar
  2. Bock, R. D., &; Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters. Application of the EM algorithm. Psychometrika, 46, 443–459.Google Scholar
  3. Bock, R. D., Gibbons, R., &; Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 21, 261–280.Google Scholar
  4. Bock, R. D., &; Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179–197.Google Scholar
  5. Bollen, K. A., &; Barb, K. H. (1981). Pearson's r and coarsely categorized measures. American Sociological Review, 46, 232–239.Google Scholar
  6. Carroll, J. (1945). The effect of difficulty and chance success on correlations between items or between tests. Psychometrika, 10, 1–20.Google Scholar
  7. Chan, D.W. (1990). The Maudsley obsessional compulsive inventory: A psychometric investigation on Chinese normal subjects. Behaviour Research and Therapy, 28, 413–420.Google Scholar
  8. Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32.Google Scholar
  9. Cohen, J., &; Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Dempster, A. P., Laird, N. M., &; Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.Google Scholar
  11. Diler, R. S., &; Avci, A. (2000). Open-label trial of paroxetine in children with obsessive compulsive disorder. Current Therapeutic Research, 61, 706–719.Google Scholar
  12. Divgi, D. R. (1979). Calculation of the tetrachoric correlation coefficient. Psychometrika, 44, 169–172.Google Scholar
  13. Embretson, S. E., &; Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.Google Scholar
  14. Emmelkamp, P. M. G., Kraaijkamp, H. J. M., &; van den Hout, M. A. (1999). Assessment of obsessive compulsive disorder. Behavior Modification, 23, 269–279.Google Scholar
  15. Gibbons, R. D., Clarke, D. C., Von Ammon-Cavanaugh, S., &; Davis, J. M. (1985). Application of modern psychometric theory in psychiatric research. Journal of Psychiatric Research, 19, 43–55.Google Scholar
  16. JÖoreskog, K. G., &; SÖorbom, D. (1992). LISREL VII: A guide to the program and applications [Computer program]. Mooresville, IN: Scientific Software.Google Scholar
  17. Hantouche, E., &; Guelfi, J. D. (1993). Self-assessment of obsessive compulsive disorder:Validation of the French version of two scales. Encephale, 19, 241–248.Google Scholar
  18. Hodgson, R. J., &; Rachman, S. (1977). Obsessional compulsive complaints. Behaviour Research and Therapy, 15, 389–395.Google Scholar
  19. McDonald, R. P., &; Ahlawat, K. S. (1974). Difficulty factors in binary data. British Journal of Mathematical and Statistical Psychology, 27, 82–99.Google Scholar
  20. Meesters, Y. (1997). Acomparison of two questionnaires assessing OCD with OCD inpatients. Gedragstherapie, 30, 103–112.Google Scholar
  21. Min, B. B., &; Won, H. T. (1999). Reliability and validity of the Korean translations of Maudsley obsessional compulsive inventory and Padua inventory. Korean Journal of Clinical Psychology, 18, 163–182.Google Scholar
  22. Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11, 3–31.Google Scholar
  23. MÜueller, N., Putz, A., Kathmann, N., Lehle, R., GÜunther, W., &; Straube, A. (1997). Characteristics of obsessive-compulsive symptoms in Tourette's synderome, obsessive-compulsive disorder, and Parkinson's disease. Psychiatry Research, 70, 105–114.Google Scholar
  24. Muthéen, B. O. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551–560.Google Scholar
  25. Muthéen, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.Google Scholar
  26. Muthéen, L., &; Muthéen, B. O. (1998). Mplus: Statistical analysis with latent variables [Computer program]. Los Angeles: Muthéen &; Muthéen.Google Scholar
  27. Muthéen, B. O., &; Satorra, A. (1995). Technical aspects of Muthéen's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489–503.Google Scholar
  28. Parry, C. D., &; McArdle, J. J. (1991). An applied comparison of methods for least-squares factor analysis of dichotomous variables. Applied Psychological Measurement, 15, 35–46.Google Scholar
  29. Rachman, S. J., &; Hodgson, R. J. (1980). Obsessions and compulsions. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  30. Sanavio, E., &; Vidotto, G. (1985). The components of the Maudsley obsessional compulsive questionnaire. Behaviour Research and Therapy, 23, 659–662.Google Scholar
  31. Sternberger, L. G., &; Burns, G. L. (1990a). Maudsley obsessional- compulsive inventory: Obsessions and compulsions in a nonclinical sample. Behavior Research and Therapy, 28, 337–340.Google Scholar
  32. Sternberger, L. G., &; Burns, G. L. (1990b). Compulsive activity checklist and the Maudsley obsessional-compulsive inventory: Psychometric properties of two measures of obsessive compulsive disorder. Behavior Therapy, 21, 117–127.Google Scholar
  33. Takane, Y., &; De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408.Google Scholar
  34. Thomas, J., Turkheimer, E., &; Oltmanns, T. F. (2000). Psychometric analysis of racial differences on the Maudsley obsessional compulsive inventory. Assessment, 7, 247–258.Google Scholar
  35. Unoki, K., Kasuga, T., Matsushima, E., Ohta, K., &; Doi, N. (2000). Attentional process of emotional information: Comparison between clinical and nonclinical obsessive compulsive disorder. Seishin Igaku Clinical Psychiatry, 42, 273–280.Google Scholar
  36. van Oppen, P., Hoekstra, R. J., &; Emmelkamp, P. M. G. (1995). The structure of obsessive compulsive symptoms. Behaviour Research and Therapy, 33, 15–23.Google Scholar
  37. West, S. G., Finch, J. F., &; Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.) Structural equation modeling: Concepts, issues, and applications. (pp. 56–75). Thousand Oaks, CA: Sage.Google Scholar
  38. Wherry, R. I., &; Gaylord, R. H. (1944). Factor pattern of test items and tests as a function of the correlation coefficient: Content, difficulty, and constant error factors. Psychometrika, 9, 237–244.Google Scholar
  39. Wilson, D., Wood, R. L., &; Gibbons, R. (1991). TESTFACT: Test scoring, item statistics, and item factor analysis [Computer program]. Chicago: Scientific Software.Google Scholar
  40. Wylie, P. B. (1976). Effects of coarse grouping and skewed marginal distributions on the Pearson product moment correlation coefficient. Educational and Psychological Measurement, 36, 1–7.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Carol M. Woods
    • 1
  1. 1.L. L. Thurstone Psychometric LabUniversity of North Carolina at Chapel HillChapel Hill

Personalised recommendations