Advertisement

Journal of Sol-Gel Science and Technology

, Volume 26, Issue 1–3, pp 677–680 | Cite as

Comparative Study of the Acidity of Sulphated Zirconia Supported on Alumina Prepared by Sol-Gel and Impregnation Methods

  • M.K. Younes
  • A. Ghorbel
  • A. Rives
  • R. Hubaut
Article

Abstract

Sulphated and unsulphated alumina-zirconia with atomic ratio Zr/Al = 0.5 were prepared by sol-gel and impregnation methods. The solid prepared by the sol-gel method exhibits the higher specific surface area. The Kelvin probe shows that the value of unsulphated sample is around 400 mV. This value grows up to 1100 mV for sample prepared by impregnation of aerogel alumina by sulphated propoxide zirconium and up to 1450 mV for sulphated alumina-zirconia aerogel catalyst. The modification of the work function is probably due to the charge transfer from the zirconium and aluminium to an oxygen species, responsible for the increase of Lewis acidity. XPS results show that the aluminium and zirconium exist in oxide form as Al2O3 and ZrO2. The sulphur is present as sulphate species in the solids bonded to the Al—Zr—O framework. Furthermore, the oxygen species exist in different types created by the introduction of sulphur in the bulk of solids.

Compared to the impregnated catalyst the sol-gel sulphated alumina zirconia exhibits higher activity in the isopropanol dehydration reaction in the temperature range 423 K–523 K.

aerogel sulphated alumina-zirconia hydrolysis isopropanol dehydration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Huang, B. Zho, and Y. Xie, Applied Catal. A: General 173, 27 (1998).Google Scholar
  2. 2.
    R. Olido, A. Goeppert, D. Habemacher, J. Sommer, and F. Pinna, J. Catal. 197, 344 (2001).Google Scholar
  3. 3.
    N. Essayem, G. Coudurier, J.C. Vedrine, D. Habemacher, and J. Sommel, J. Catal. 183, 392 (1999).Google Scholar
  4. 4.
    J.C. Luy, J.C. Yori, A.A. Castro, and J.M. Parera, React. Kinet. Catal. Lett. 36, 275 (1988).Google Scholar
  5. 5.
    J.M. Dominguez, J.L. Hernandez, and G. Sandoval, Applied Catalysis A: General 197, 119 (2000).Google Scholar
  6. 6.
    W. Zhang, E.E. Lachhowsky, and P.P. Glasser, J. Mater. Sci. 28, 6222 (1993).Google Scholar
  7. 7.
    J. Melendez-Hénandez, G. Sandoval-Robles, A. Castillo-Mares, and J.M. Dominguez, in Actas. XV Symp. Iberoam. Catal, Argentina (1996), vol. 2, p. 805.Google Scholar
  8. 8.
    A. Montaya, J. Meléndez-Hemandez, G. Sandoval-Robles, and J.M. Dominguez, in MRS Symp. Proc., Microporous and Macroporous Materials (1996), vol. 431, p. 337.Google Scholar
  9. 9.
    M. Vrinat, M. Breysse, C. Geantet, J. Ramirez, and F. Massoth, Catal. Lett. 26, 25 (1994).Google Scholar
  10. 10.
    M.K. Younes, A. Ghorbel, A. Rives, and R. Hubaut., J. Sol-Gel Science and Technology 19, 819 (2000).Google Scholar
  11. 11.
    M.K. Younes, A. Ghorbel, A. Rives, and R. Hubaut, Studies in Surface and Catalysis D 130, 3219 (2000).Google Scholar
  12. 12.
    Y. Barbaux, J.P. Bonnelle, and J.P. Beaufils, J. Chim. Phys. 73, 25 (1976).Google Scholar
  13. 13.
    A.F. Wells, Structural Inorgic Chemistry, 5th edn. (Oxford, 1984), p. 333.Google Scholar
  14. 14.
    S. Ardizzone, C.L. Bianchi, and M. Signoretto, Appl. Surf. Sci. 163, 213 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.K. Younes
  • A. Ghorbel
  • A. Rives
  • R. Hubaut

There are no affiliations available

Personalised recommendations