Heart Failure Reviews

, Volume 7, Issue 4, pp 359–369 | Cite as

Peroxynitrite in Myocardial Ischemia-Reperfusion Injury

  • Manoj M. Lalu
  • Wenjie Wang
  • Richard Schulz


Peroxynitrite is a highly reactive oxidant which is produced during reperfusion of the ischemic heart. The role that this molecule plays in reperfusion injury has been controversial. Many investigations have demonstrated toxic effects of peroxynitrite, whereas others have found it to be protective during reperfusion. This review surveys evidence supporting both sides and proposes that peroxynitrite is a dichotomous molecule with beneficial and detrimental effects on the reperfused heart. Its toxic effects are mediated by modification and activation of a variety of targets (including poly (ADP) ribose synthetase and matrix metalloproteinases) while its beneficial effects are primarily mediated through its reaction with thiols, resulting in the formation of NO donor compounds (S-nitrosothiols).

peroxynitrite ischemia-reperfusion myocardium nitric oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Opie LH. Oxygen lack: Ischemia and angina: The Heart. Philadelphia, PA: Lippincott-Raven, 1998:51– 561.Google Scholar
  2. 2.
    Ambrosio G, Tritto I. Reperfusion injury: Experimental evidence and clinical implications. Am Heart J 1999;138:S6–S75.Google Scholar
  3. 3.
    Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 1999;96:65–662.Google Scholar
  4. 4.
    Schulz R, Smith JA, Lewis MJ, Moncada S. Nitric oxide synthase in cultured endocardial cells of the pig. Br J Pharmacol 1991;104:2–24.Google Scholar
  5. 5.
    Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991;88:1048– 10484.Google Scholar
  6. 6.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:200–2012.Google Scholar
  7. 7.
    Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO, 3rd. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995;92:32–326.Google Scholar
  8. 8.
    Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987;2:105–1058.Google Scholar
  9. 9.
    Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991;88:465–4655.Google Scholar
  10. 10.
    Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994;356:29–298.Google Scholar
  11. 11.
    Mohr S, Stamler JS, Brune B. Posttranslational modification of glyceraldehyde-–phosphate dehydrogenase by Snitrosylation and subsequent NADH attachment. J Biol Chem 1996;271:420–4214.Google Scholar
  12. 12.
    Balligand JL, Ungureanu-Longrois D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, Kelly RA, Smith TW, Michel T. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFNgamma. Am J Physiol 1995;268:H129–H1303.Google Scholar
  13. 13.
    Schulz R, Nava E, Moncada S. Induction and potential biological relevance of Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 1992;105:57–580.Google Scholar
  14. 14.
    Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA. Cytokineinducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 1994;269:2758– 27588.Google Scholar
  15. 15.
    Behr-Roussel D, Rupin A, Sansilvestri-Morel P, Fabiani JN, Verbeuren TJ. Histochemical evidence for inducible nitric oxide synthase in advanced but non-ruptured human atherosclerotic carotid arteries. Histochem J 2000;32:4–51.Google Scholar
  16. 16.
    Sanchez de Miguel L, Arriero MM, Farre J, Jimenez P, Garcia-Mendez A, de Frutos T, Jimenez A, Garcia R, Cabestrero F, Gomez J, de Andres R, Monton M, Martin E, De la Calle-Lombana LM, Rico L, Romero J, Lopez-Farre A. Nitric oxide production by neutrophils obtained from patients during acute coronary syndromes: Expression of the nitric oxide synthase isoforms. J Am Coll Cardiol 2002;39:81–825.Google Scholar
  17. 17.
    Liu P, Hock CE, Nagele R, Wong PYK. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 1997;272:H232–H2336.Google Scholar
  18. 18.
    Depre C, Havaux X, Renkin J, Vanoverschelde JL, Wijns W. Expression of inducible nitric oxide synthase in human coronary atherosclerotic plaque. Cardiovasc Res 1999;41:46–472.Google Scholar
  19. 19.
    Valen G, Paulsson G, Bennet AM, Hansson GK, Vaage J. Gene expression of inflammatory mediators in different chambers of the human heart. Ann Thorac Surg 2000;70:56–567.Google Scholar
  20. 20.
    Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 1996;271:2922–29230.Google Scholar
  21. 21.
    Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987;84:140–1407.Google Scholar
  22. 22.
    Peterson DA, Asinger RW, Elsperger KJ, Homans DC, Eaton JW. Reactive oxygen species may cause myocardial reperfusion injury. Biochem Biophys Res Commun 1985;127:8–93.Google Scholar
  23. 23.
    Stewart JR, Crute SL, Loughlin V, Hess ML, Greenfield LJ. Prevention of free radical-induced myocardial reperfusion injury with allopurinol. J Thorac Cardiovasc Surg 1985;90:6–72.Google Scholar
  24. 24.
    Terada LS, Rubinstein JD, Lesnefsky EJ, Horwitz LD, Leff JA, Repine JE. Existence and participation of xanthine oxidase in reperfusion injury of ischemic rabbit myocardium. Am J Physiol 1991;260:H80–H810.Google Scholar
  25. 25.
    Becker LB, van den Hoek TL, Shao ZH, Li CQ, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 1999;277:H224–H2246.Google Scholar
  26. 26.
    Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA, Jr. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc Natl Acad Sci USA 1998;95:922–9225.Google Scholar
  27. 27.
    Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitritemediated cellular injury. Proc Natl Acad Sci USA 1996;93:677–6774.Google Scholar
  28. 28.
    Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998;273:2580–25808.Google Scholar
  29. 29.
    Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 1997;33:42–432.Google Scholar
  30. 30.
    Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 1993;72:40–412.Google Scholar
  31. 31.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good the bad, and the ugly. Am J Physiol 1996;271:C142–C1437.Google Scholar
  32. 32.
    Schulz R, Wambolt R. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc Res 1995;30:43–439.Google Scholar
  33. 33.
    Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumor necrosis factor-alpha. Brit J Pharmacol 1995;114:2–34.Google Scholar
  34. 34.
    Maulik N, Engelman DT, Watanabe M, Engelman RM, Maulik G, Cordis GA, Das DK. Nitric oxide signaling in ischemic heart. Cardiovasc Res 1995;30:59–601.Google Scholar
  35. 35.
    Uppu RM, Squadrito GL, Pryor WA. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys 1996;327:33–343.Google Scholar
  36. 36.
    Denicola A, Freeman BA, Trujillo M, Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 1996;333:4–58.Google Scholar
  37. 37.
    Gow A, Duran D, Thom SR, Ischiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys 1996;333:4–48.Google Scholar
  38. 38.
    Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM. Mechanisms of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol 1998;275:H50–H519.Google Scholar
  39. 39.
    Ma XL, Gao F, Lopez BL, Christopher TA, Vinten-Johansen J. Peroxynitrite, a two-edged sword in postischemic myocardial injury-dichotomy of action in crystalloid-versus blood-perfused hearts. J Pharmacol Exp Ther 2000;292:91–920.Google Scholar
  40. 40.
    Schulz R, Dodge KL, Lopaschuk GD, Clanachan AS. Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol 1997;272:H121– H1219.Google Scholar
  41. 41.
    Ferdinandy P, Schulz R. Peroxynitrite: Toxic or protective in the heart? Circulation Research 2000;88:12e-13e.Google Scholar
  42. 42.
    Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999;43:86–878.Google Scholar
  43. 43.
    Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Radic Biol Med 1998;25:40–433.Google Scholar
  44. 44.
    Ronson RS, Nakamura M, Vinten-Johansen J. The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 1999;44:4–59.Google Scholar
  45. 45.
    Moreno JJ, Pryor WA. Inactivation of alpha –proteinase inhibitor by peroxynitrite. Chem Res Toxicol 1992;5:42– 431.Google Scholar
  46. 46.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:48–487.Google Scholar
  47. 47.
    Moro MA, Darley-Usmar VM, Lizasoain I, Su Y, Knowles RG, Radomski MW, Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol 1995;116:199–2004.Google Scholar
  48. 48.
    Salgo MG, Bermudez E, Squadrito GL, Pryor WA. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch Biochem Biophys 1995;322:50–505.Google Scholar
  49. 49.
    Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994;269:2606–26075.Google Scholar
  50. 50.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991;266:424– 4250.Google Scholar
  51. 51.
    Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992;298:43–437.Google Scholar
  52. 52.
    Zhang Y, Bissing JW, Xu L, Ryan AJ, Martin SM, Miller FJ, Jr., Kregel KC, Buettner GR, Kerber RE. Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model. J Am Coll Cardiol 2001;38:54–554.Google Scholar
  53. 53.
    Hayashi Y, Sawa Y, Nishimura M, Tojo SJ, Fukuyama N, Nakazawa H, Matsuda H. P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production. J Thorac Cardiovasc Surg 2000;120:55–565.Google Scholar
  54. 54.
    Ma XL, Lopez BL, Liu GL, Christopher TA, Ischiropoulos H. Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. Cardiovasc Res 1997;36:19–204.Google Scholar
  55. 55.
    Sato H, Zhao ZQ, Jordan JE, Todd JC, Riley RD, Taft CS, Hammon JW, Jr., Li P, Ma X, Vinten-Johansen J. Basal nitric oxide expresses endogenous cardioprotection during reperfusion by inhibition of neutrophil-mediated damage after surgical revascularization. J Thorac Cardiovasc Surg 1997;113:39–409.Google Scholar
  56. 56.
    Williams MW, Taft CS, Ramnauth S, Zhao ZQ, Vinten-Johansen J. Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Research 1995;30:7–86.Google Scholar
  57. 57.
    Beresewicz A, Karwatowska-Prokopczuk E, Lewartowski B, Cedro-Ceremuazynska K. A protective role of nitric oxide in isolated ischaemic/reperfused rat heart. Cardiovasc Res 1995;30:100–1008.Google Scholar
  58. 58.
    Wang QD, Morcos E, Wiklund P, Pernow J. L-arginine enhances functional recovery and Ca(2+)-dependent nitric oxide synthase activity after ischemia and reperfusion in the rat heart. J Cardiovasc Pharmacol 1997;29:29–296.Google Scholar
  59. 59.
    Brunner F, Leonhard B, Kukovetz WR, Mayer B. Role of endothelin, nitric oxide and L-arginine release in ischaemia/ reperfusion injury of rat heart. Cardiovasc Res 1997;36:6–66.Google Scholar
  60. 60.
    du Toit EF, McCarthy J, Miyashiro J, Opie LH, Brunner F. Effect of nitrovasodilators and inhibitors of nitric oxide synthase on ischaemic and reperfusion function of rat isolated hearts. Brit J Pharmacol 1998;123:115–1167.Google Scholar
  61. 61.
    Depre C, Vanoverschelde JL, Goudemant JF, Mottet I, Hue L. Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation 1995;92:191– 1918.Google Scholar
  62. 62.
    Ferdinandy P, Daniel H, Ambrus I, Rothery R, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 2000;87:24–247.Google Scholar
  63. 63.
    Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000;294:39–401.Google Scholar
  64. 64.
    Sakurai M, Fukuyama, N, Iguchi A, Akimoto H, Ohmi M, Yokoyama H, Nakazawa H, Tabayashi K. Quantitative analysis of cardiac –L-nitrotyrosine during acute allograft rejection in an experimental heart transplantation. Transplantation 1999;68:181–1822.Google Scholar
  65. 65.
    Kooy NW, Lewis SJ, Royall JA, Ye YZ, Kelly DR, Beckman JS. Extensive tyrosine nitration in human myocardial inflammation: Evidence for the presence of peroxynitrite. Crit Care Med 1997;25:81–819.Google Scholar
  66. 66.
    Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:2940–29415.Google Scholar
  67. 67.
    Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am J Cardiol 1998;82:14K-17K.Google Scholar
  68. 68.
    Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to –nitrotyrosine. J Biol Chem 1998;273:1408– 14089.Google Scholar
  69. 69.
    Klebl BM, Ayoub AT, Pette D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Letters 1998;422:38–384.Google Scholar
  70. 70.
    Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem 1997;378:70–713.Google Scholar
  71. 71.
    Woessner JF. The matrix metalloproteinase family. In: Matrix Metalloproteinases. San Diego, CA: Academic Press, 1998:–14.Google Scholar
  72. 72.
    Yu AE, Murphy AN, Stetler-Stevenson WG. 7–kDa gelatinase (gelatinase A): Structure, activation, regulation, and substrate specificity. In: Matrix Metalloproteinases. San Diego: Academic Press, 1998:8–114.Google Scholar
  73. 73.
    Cheung P-Y, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 2000;101:183–1839.Google Scholar
  74. 74.
    Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 2002;53:16–174.Google Scholar
  75. 75.
    Murphy G, Willenbrock F, Crabbe T, O'shea M, Ward R, Atkinson S, O'Connell J, Docherty A. Regulation of matrix metalloproteinase activity. Ann NY Acad Sci 1994;732:3–41.Google Scholar
  76. 76.
    Okamato T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: A novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys 1997;342:26–274.Google Scholar
  77. 77.
    Maeda H, Okamoto T, Akaike T. Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. Biol Chem 1998;379:19– 200.Google Scholar
  78. 78.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996;98:257–2579.Google Scholar
  79. 79.
    Okamato T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disul-fide S-oxide formation. J Biol Chem 2001;276:2959– 29602.Google Scholar
  80. 80.
    Frears ER, Zhang Z, Blake DR, O'Connell JP, Winyard PG. Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Letters 1996;381:2–24.Google Scholar
  81. 81.
    Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M. Matrix-dependent mechanism of neutrophilmediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 2001;103:218–2187.Google Scholar
  82. 82.
    Danielsen CC, Wiggers H, Andersen HR. Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol 1998;30:143–1442.Google Scholar
  83. 83.
    Mayers I, Hurst T, Puttagunta L, Radomski A, Mycyk T, Sawicki G, Johnson D, Radomski MW. Cardiac surgery increases the activity of matrix metalloproteinases and nitric oxide synthase in human hearts. J Thorac Cardiovasc Surg 2001;122:74–752.Google Scholar
  84. 84.
    McDonough JL, Labugger R, Pickett W, Tse MY, MacKenzie S, Pang SC, Atar D, Ropchan G, Van Eyk JE. Cardiac troponin I is modified in the myocardium of bypass patients. Circulation 2001;103:5–64.Google Scholar
  85. 85.
    Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999;79:60–634.Google Scholar
  86. 86.
    Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 2002;106: 154–1549.Google Scholar
  87. 87.
    Fernandez-Patron C, Radomski MW, Davidge SM. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res 1999;85:90– 911.Google Scholar
  88. 88.
    Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-–dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res 2000;87:67–676.Google Scholar
  89. 89.
    Ikai K, Ueda K. Immunohistochemical demonstration of poly(adenosine diphosphate-ribose) synthetase in bovine tissues. J Histochem Cytochem 1983;31:126–1264.Google Scholar
  90. 90.
    Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 1999;20:17–181.Google Scholar
  91. 91.
    Szabo C, Zingarelli B, O'Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 1996;93:175–1758.Google Scholar
  92. 92.
    Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabo C. Protection against myocardial ischemia and reperfusion injury by –aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc Res 1997;36:20–215.Google Scholar
  93. 93.
    Thiemermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly(ADP ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci USA 1997;94:67–683.Google Scholar
  94. 94.
    Halmosi R, Berente Z, Osz E, Toth K, Literati-Nagy P, Sumegi B. Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system. Mol Pharmacol 2001;59:149–1505.Google Scholar
  95. 95.
    Grupp IL, Jackson TM, Hake P, Grupp G, Szabo C. Protection against hypoxia-reoxygenation in the absence of poly (ADP-ribose) synthetase in isolated working hearts. J Mol Cell Cardiol 1999;31:29–303.Google Scholar
  96. 96.
    Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 1998;83:8–94.Google Scholar
  97. 97.
    Lefer DJ, Scalia R, Campbell B, Nossuli T, Hayward R, Salamon M, Grayson J, Lefer AM. Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 1997;99:68–691.Google Scholar
  98. 98.
    Nakamura M, Thourani VH, Ronson RS, Velez DA, Ma XL, Katzmark S, Robinson J, Schmarkey LS, Zhao ZQ, Wang NP, Guyton RA, Vinten-Johansen J. Glutathione reverses endothelial damage from peroxynitrite, the byproduct of nitric oxide degradation, in crystalloid cardioplegia. Circulation 2000;102:III33–III338.Google Scholar
  99. 99.
    Ronson RS, Thourani VH, Ma XL, Katzmark SL, Han D, Zhao ZQ, Nakamura M, Guyton RA, Vinten-Johansen J. Peroxynitrite, the breakdown product of nitric oxide, is beneficial in blood cardioplegia but injurious in crystalloid cardioplegia. Circulation 1999;100:II38–III391.Google Scholar
  100. 100.
    Cheung PY, Wang W, Schulz R. Glutathione protects against myocardial ischemia-reperfusion injury by detoxifying peroxynitrite. J Mol Cell Cardiol 2000;32:166– 1678.Google Scholar
  101. 101.
    Balazy M, Kaminski PM, Mao K, Tan J, Wolin MS. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. J Biol Chem 1998;273:3200–32015.Google Scholar
  102. 102.
    Wu M, Pritchard KA, Jr., Kaminski PM, Fayngersh RP, Hintze TH, Wolin MS. Involvement of nitric oxide and nitrosothiols in relaxation of pulmonary arteries to peroxynitrite. Am J Physiol 1994;266:H210–H2113.Google Scholar
  103. 103.
    Pabla R, Buda AJ, Flynn DM, Blesse SA, Shin AM, Curtis MJ, Lefer DJ. Nitric oxide attenuates neutrophilmediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 1996;78:6–72.Google Scholar
  104. 104.
    Pabla R, Buda AJ, Flynn DM, Salzberg DB, Lefer DJ. Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am J Physiol 1995;269:H111–H1121.Google Scholar
  105. 105.
    Nash GB. Adhesion between neutrophils and platelets: A modulator of thrombotic and inflammatory events? Thromb Res 1994;74:S–S11.Google Scholar
  106. 106.
    Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996;79:36–380.Google Scholar
  107. 107.
    Lee CI, Liu X, Zweier JL. Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J Biol Chem 2000;275:936–9376.Google Scholar
  108. 108.
    Pasquet JP, Zou MH, Ullrich V. Peroxynitrite inhibition of nitric oxide synthases. Biochimie 1996;78:78–791.Google Scholar
  109. 109.
    Altug S, Demiryurek AT, Cakici I, Kanzik I. The beneficial effects of peroxynitrite on ischaemia-reperfusion arrhythmias in rat isolated hearts. Eur J Pharm 1999;384:15– 162.Google Scholar
  110. 110.
    Misko TP, Highkin MK, Veenhuizen AW, Manning PT, Stern MK, Currie MG, Salvemini D. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 1998;273:1564–15653.Google Scholar
  111. 111.
    Cuzzocrea S, Misko TP, Costantino G, Mazzon E, Micali A, Caputi AP, Macarthur H, Salvemini D. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J 2000;14:106–1072.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Manoj M. Lalu
  • Wenjie Wang
  • Richard Schulz

There are no affiliations available

Personalised recommendations