Journal of Sol-Gel Science and Technology

, Volume 26, Issue 1–3, pp 667–670 | Cite as

Iron-Cobalt-Silica Aerogel Nanocomposite Materials

  • M.F. Casula
  • A. Corrias
  • G. Paschina


Iron-Cobalt-Silica nanocomposites were prepared in form of aerogels. X-ray diffraction, transmission electron microscopy and N2 physisorption at 77 K were used to investigate the structure, size and dispersion of the nanocrystals and the porous structure in the aerogels and in the final composites. The variation of the supercritical drying conditions gives rise to differences in the morphological features of the aerogels. These differences influence the size of the cobalt oxide nanoparticles in the aerogels. On the other hand, after the reduction treatment the average size of the alloy nanoparticles is the same in all the aerogel nanocomposites. The effect of reduction temperature on alloy formation and particle size is also discussed.

aerogels alloys nanocomposites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Komarneni, J. Mater. Chem. 2, 1219 (1992).Google Scholar
  2. 2.
    C.E. Moreau, J.A. Caballero, R. Loloee, W.P. Pratt Jr, and N.O. Birge, J. Appl. Phys. 87, 6316 (2000).Google Scholar
  3. 3.
    D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater. 8, 1770 (1996).Google Scholar
  4. 4.
    J.M. MacLaren, T.C. Schulthess, W.H. Butler, R. Sutton, and M. MacHenry, Journal of Applied Physics 85, 4833 (1999).Google Scholar
  5. 5.
    S.J. Teichner, Chemtech 21, 372 (1991).Google Scholar
  6. 6.
    IUPAC Manual of Symbols and Terminology, Appendix 2, Pt.1: Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578 (1972).Google Scholar
  7. 7.
    PDF-2 File, JCPDS (International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA, 1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.F. Casula
  • A. Corrias
  • G. Paschina

There are no affiliations available

Personalised recommendations