Journal of Chemical Ecology

, Volume 28, Issue 10, pp 1919–1934 | Cite as

Marine Tannins: The Importance of a Mechanistic Framework for Predicting Ecological Roles

Article

Abstract

Since chemical ecology emerged as a field of marine science, it has been strongly influenced by studies of chemically mediated interactions in land-based systems. Marine chemical ecologists, like their terrestrial counterparts, initially focused on identifying natural products and evaluating the potential ecological roles of these products as defenses, attractants, or other cues. Now, like our land-based colleagues, we must increase our focus on the physiological and biochemical mechanisms that underlie the chemical interactions, paying particular attention to regulation of biosynthetic pathways, within-plant and between-plant signaling cues, and comparative and functional genomics. Here, we review the current state of knowledge regarding a heterogenous group of macrophyte natural products, the marine tannins and simple phenolics, to illustrate how such information is critical to future attempts to predict their ecological roles.

Marine chemical ecology macrophytes phenols tannins terrestrial – marine comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alongi, D. M. 1987. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71:537–540.Google Scholar
  2. Appel, H. 1993. Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19:1521–1552.Google Scholar
  3. Arnold, T.M. and Targett, N.M. 2000. Evidence for metabolic turnover of polyphenolics in tropical brown algae. J. Chem. Ecol. 26:1393–1410.Google Scholar
  4. Arnold, T. M. and Targett, N. M. 2002. To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos. In press.Google Scholar
  5. Arnold, T. M., Targett, N. M., Tanner, C. E., Hatch, W. I., and Ferrari, K. E. 2001. Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J. Phycol. 37:1026–1029.Google Scholar
  6. Baerlocher, F. and Newell, S. Y. 1994. Phenolics and proteins affecting palatability of Spartina leaves to the gastropod Littoraria irrorata. Mar. Ecol. 15:65–75.Google Scholar
  7. Basak, U. C., Das, A. B., and Das, P. 1996. Chlorophylls, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangrove. Bull. Mar. Sci. 58: 654–659.Google Scholar
  8. Basak, U. C., Das, A. B., and Das, P. 1998. Seasonal changes in organic constituents in leaves of nine mangrove species. Mar. Freshwater Res. 49:369–372.Google Scholar
  9. Boettcher, A. A. and Targett, N.M. 1993. The role of polyphenolic molecular size in the reduction of assimilation efficiency in the herbivorous marine fish Xiphister mucosus. Ecology 74:891–903.Google Scholar
  10. Bryant, J. P., Chapin, F. S., and Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.Google Scholar
  11. Buchsbaum, R., Valiela, I., and Swain, T. 1984. The role of phenolic compounds and other plant constituents in feeding by Canada geese in a coastal marsh. Oecologia 63:343–349.Google Scholar
  12. Buchsbaum, R. N., Short, F. T., and Cheney, D. P. 1990. Phenolic-nitrogen interactions in eelgrass, Zostera marina L.: possible implications for disease resistance. Aquat. Bot. 37:291–297.Google Scholar
  13. Camilleri, J. 1989. Leaf choice by crustaceans in a mangrove forest in Queensland. Mar. Biol. 102:453–459. MARINE TANNINS 1931Google Scholar
  14. Cebrian, J., Duarte, C. M., Marba, N., Enriquez, S., Gallegos, M., and Olesen, B. 1996. Herbivory on Posidonia oceanica: magnitude and variability in the Spanish Mediterranean. Mar. Ecol. Prog. Ser. 130:147–155.Google Scholar
  15. Cebrian, J., Duarte, C. M., Agawin, N. S. R., and Merino, M. 1998. Leaf growth response to simulated herbivory: a comparison among seagrass species. J. Exp. Mar. Biol. Ecol. 220:67–81.Google Scholar
  16. Collen, J. and Davison, I. R. 1999. Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J. Phycol. 35:54–61.Google Scholar
  17. Cronin, G. 2001. Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theory, p. 325–354, in J. B. McClintock and B. J. Baker (eds.). Marine Chemical Ecology CRC Press, Boca Raton, Florida.Google Scholar
  18. Dawes, C. J. 1998. Marine Botany. John Wiley & Sons, New York.Google Scholar
  19. Den Hartog, C. 1996. Sudden declines of seagrass beds; “wasting disease” and other disasters, pp. 307–315, in J. Kuo, R. C. Phillips, K. I. Walkers, and H. Kirkman (eds.). Seagrass Biology: Proceedings of an InternationalWorkshop, 25–29 January 1996, Rottnest Island,Western Austalia.Google Scholar
  20. Duranko, M. J. and Kuss, K. M. 1994. Effects of Labyrinthula infection on the photosynthentic capacity of Thalassia testudinum. Bull. Mar. Sci. 54:727–732.Google Scholar
  21. Feller, I. R. 1996. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monogr. 65:477–505.Google Scholar
  22. Filip, Z. and Alberts, J. J. 1989. Humic substances isolated from Spartina alterniflora (Loisel.) following long-term decomposition in sea water. Sci. Total Environ. 83:273–285.Google Scholar
  23. Greenway, M. 1995. Trophic relationships of macrofauna within a Jamaican seagrass meadow and the role of the echinoid Lytechinus variegatus (Lamarck). Bull. Mar. Sci. 56:719–736.Google Scholar
  24. Hamilton, J. G., Zangerl, A. R., Delucia E. H., and Berenbaum, M. R. 2002. The carbon-nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:86–95.Google Scholar
  25. Hammerschmidt, R. and Smith-baker, J. A. 1999. Roles of salicylic acid in disease resistance, pp. 37–54, in A. A. Agrawal, S. Tuzun, and E. Bent (eds.). Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture. APS Press, St. Paul, Minnesota.Google Scholar
  26. Hammerstrom, K., Dethier, M. N., and Duggins, D.O. 1998. Rapid phlorotannin induction and relaxation in five Washington kelps. Mar. Ecol. Prog. Ser. 165:293–305.Google Scholar
  27. Harrison, P. G. 1982. Control of microbial growth and of amphipod grazing by water-soluble compounds from the leaves of Zostera marina. Mar. Biol. 67:225–230.Google Scholar
  28. Harrison, P. G. and Chan, A. T. 1980. Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Mar. Biol. 61:21–26.Google Scholar
  29. Harrison, P. G. and Durance, C. 1989. Reductions in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina. Mar. Biol. 90:117–119.Google Scholar
  30. Hay, M. E. and Steinberg, P. D. 1992. The chemical ecology of plant-herbivore interactions in marine vs. terrestrial communities, p. 271–413, in (eds. G. A. Rosenthal and M. Berenbaum) Herbivores: Their Interactions with Secondary Plant Metabolites, Volume II Evolutionary and Ecological Processes & Academic Press, New York.Google Scholar
  31. Heck, K. L. and Valentine, J. F. 1995. Sea urchin herbivory: evidence for long-lasting effects in subtropical seagrass meadows. J. Exp. Mar. Biol. Ecol. 189:205–217.Google Scholar
  32. Herrmann, K. 1995. The shikimate pathway as an entry into aromatic secondary metabolism. Plant Physiol. 107:7–12.Google Scholar
  33. Jones, C. G. and Hartley, S. E. 1999. A protein competition model of phenolic allocation. Oikos 86:27–44.Google Scholar
  34. Kathiresan, K. 1992. Foliovory in Pichavaram mangroves. Environ. Ecol. 10:988–989.Google Scholar
  35. Kimura, M. and Wada, H. 1989. Tannins in mangrove tree roots and their role in the root environment. Soil Sci. Plant Nutr. 35:101–108. 1932 ARNOLD AND TARGETTGoogle Scholar
  36. Kubek, D. J. and Shuler, M. L. 1980. The effect of variations in carbon and nitrogen concentrations on phenolics formation in plant cell suspension cultures. J. Nat. Prod. 43:87–96.Google Scholar
  37. Kupper, F. C., Kloareg, B., Guern, J., and Potin, P. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125:278–291.Google Scholar
  38. Lavola, A., Julhunen–tiito, R., De La Rosa, T. M., Lehto, T., and Aphalo, P. J. 2000. Allocation of carbon to growth and secondary metabolites in brich seedlings under UV-B radiation and CO2 exposure. Physiol. Plant. 109:260–267.Google Scholar
  39. Legaz, M. E., Vicente, C., and Filho, X. L. 1985. The occurrence of lichen phenolics and their catabolites in a free-living alga, Lobophora variegata (Phaeophyta). Cryptogamie: Algol. 6:265–272.Google Scholar
  40. Liu, L. and McClure, J.W. 1995. Effects of UV-B on activities of enzymes of secondary metabolism in barley primary leaves. Physiol. Plant. 93:734–739.Google Scholar
  41. Macia, S. 2000. The effects of sea urchin grazing and drift algal blooms on a subtropical seagrass bed community. J. Exp. Mar. Biol. Ecol. 246:53–67.Google Scholar
  42. McMillian, C. Zapata, O., and Escobar, L. 1980. Sulphated phenolic compounds in seagrasses. Aquat. Bot. 8:267–278.Google Scholar
  43. Micheli, F. 1993. Feeding ecology of mangrove crabs in northeastern Australia: Mangrove litter consumption by Sesarma messa and Sesarma smithii. J. Exp. Mar. Biol. Ecol. 171:165–186.Google Scholar
  44. Muday, G. K. and Herrmann, K.M. 1992. Wounding induces one of two isoenzymes of 3-deoxy-Darabino-heptulosonate 7-phosphate synthase in Solanum tuberosum L. Plant Physiol. 98:496–500.Google Scholar
  45. Muelstein, L.K. 1988. Labyrinthula sp., a marine slime mold producing symptoms of wasting disease in eelgrass, Zostera marina. Mar. Biol. 99:465–472.Google Scholar
  46. Muehlstein, L. L. 1992. The host-pathogen interaction in the wasting disease of eelgrass, Zostera marina. Can. J. Bot. 70:2081–2088.Google Scholar
  47. Nicholson, R. L. and Hammerschmidt, R. 1992. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30:369–389.Google Scholar
  48. Packter, N. M. 1980. Characterization of subspecies from a fungal fatty acid synthetase. Biochim. Biophys. Acta 615:497–508.Google Scholar
  49. Pavia, H. and Brock, E. 2000. Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 193:285–294.Google Scholar
  50. Pavia, H. and Toth, G. 2000. Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225.Google Scholar
  51. Pavia, H. Cervin, G., Lindgren, A., and Aberg, P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157:139–146.Google Scholar
  52. Pennings, S. C., Siska, E. L., and Bertness, M. D. 2001. Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 82:1344–1359.Google Scholar
  53. Quackenbush, R. C., Bunn, D., and Lingren, W. 1986. HPLC determination of phenolic acids in the water-soluble extract of Zostera marina L. (eelgrass). Aquat. Bot. 24: 83–89.Google Scholar
  54. Ragan, M. A. and Craigie, J. S. 1976. Physodes and the phenolic compounds of brown algae. Isolation and characterization of phloroglucinol polymers from Fucus vesiculosus (L.). Can. J. Biochem. 54:66–73.Google Scholar
  55. Ragan, M. A. and Glombitza, K.-W. 1986. Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 4:130–241.Google Scholar
  56. Ravn, H. C., Andary, C., Kovacs, G., and Molgaard, P. 1989. Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem. Syst. Ecol. 17:175–184.Google Scholar
  57. Ravn, H., Pedersen, M. F., Borum, J, Andary, C., Anthoni, U., Christpherson, C., and Nielsen, P. H. 1994. Seasonal variation and distribution of two phenolics compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61.Google Scholar
  58. Reynolds, K. A. 1998. Combinational biosynthesis: Lesson learned from nature. Proc. Natl. Acad. Sci.USA 95:12744–12746.Google Scholar
  59. Richardson, C. J., Ferrell, G. M., and Vaithiyanathan, P. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192.Google Scholar
  60. Schoenwaelder, M. E. A. and Clayton, M. N. 1999. The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38:161–166.Google Scholar
  61. Seigler, D. S. 1998. Plant Secondary Metabolism. Kluwer Academic Publishing, Norwell Massachusetts.Google Scholar
  62. Short, F. T., Mathieson, A. C., and Nelson, J. I. 1986. Reoccurrence of the eelgrass wasting disease at the border of New Hampshire and Maine, USA. Mar. Ecol. Prog. Ser. 29:89–92.Google Scholar
  63. Singh, B. K., Siehl, D., and Connelly, J. A. 1991. Shikimate pathway: why does it mean so much to so many? Oxford Surveys Plant Mol. Cell. Biol. 7:143–185.Google Scholar
  64. Steinberg, P. D. and Van Altena, I. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol. Monogr. 62:189–222.Google Scholar
  65. Steinke, T. D., Rajh, A., and Holland, A. J. 1993. The feeding behavior of the red mangrove crab Sesarma meinerti De Man and its effect on the degradation of mangrove leaf litter. S. Afr. J. Mar. Sci. 13:151–160.Google Scholar
  66. Stern, J. L., Hagerman, A. E., Steinber, P. D., and Mason, P. K. 1996. Phlorotannin–protein interactions. J. Chem. Ecol. 22:1877–1899.Google Scholar
  67. Targett, N. M. and Arnold, T. M. 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34:195–205.Google Scholar
  68. Targett, N. M., Coen, L. D., Boettcher, A. A., and Tanner, C.E. 1992. Biogeographic comparisons of marine algal polyphenolics: evidence against a lattitudinal trend. Oecologia 89:464–470.Google Scholar
  69. Targett, N. M., Boettcher, A. A., Targett, T. E., and Vrolijk, N. H. 1995. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103:170–179.Google Scholar
  70. Thayer, G. W., Bjorndal, K. A., Ogden, J. C., Williams, S. L., and Zieman, J. C. 1984. Role of larger herbivores in seagrass communities. Estuaries 7:351–376.Google Scholar
  71. Toth, G. B. and Pavia, H. 2000. Water-borne cues induce chemical defense in marine algal (Ascophyllum nodosum). Proc. Natl. Acad. Sci.USA 97:14418–14420.Google Scholar
  72. Valentine, J. F. and Heck, K. L. 1991. The role of sea urchin grazing in regulating subtropical seagrass meadows: Evidence from field manipulations in the northern Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 154:215–230.Google Scholar
  73. Valentine, J. F. and Heck, K. L. 2001. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. J. Exp. Mar. Biol. Ecol. 258:65–86.Google Scholar
  74. Van Alstyne, K. L. 1988. Grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663.Google Scholar
  75. Van Alstyne, K. L. 1989. Adventitious branching as a herbivore-induced defense in the intertidal brown alga Fucus distichus. Mar. Ecol. Prog. Ser. 56:169–176.Google Scholar
  76. Van Alstyne, K. L. 1990. Effects of wounding by the herbivorous snails Littorina sitkana and L. scutlata (Mollusca) on the growth and reproduction of the intertidal alga Fucus distichus (Phaeophyta). J. Phycol. 26:412–416.Google Scholar
  77. Van Alstyne, K. L., Dethier, M. N., and Duggins, D. O. 2001. Spatial patterns in macroalgal chemical defenses, pp. 301–324 in J. B. McClintock and B. J. Baker (eds). Marine Chemical Ecology. CRC Press, Boca Raton, Florida.Google Scholar
  78. Vergeer, L. H. T. and Denhartog, C. 1994. Omnipresence of Labyrinthulaceae in seagrasses. Aquat. Bot. 45:1–20.Google Scholar
  79. Vergeer, L. H. T. and Develi, A. 1997. Phenolic acids in healthy and infected leaves Zostera marina and their growth-limiting properties towards Labyrinthula zosterae. Aquat. Bot. 58:65–72. 1934 ARNOLD AND TARGETTGoogle Scholar
  80. Vergeer, L. H. T., Aarts, T. L., and De Groot. J. D. 1995. The wasting disease and the effects of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquat. Bot. 52:35–44.Google Scholar
  81. Wecker, M., Strong, D., and Grevstad, F. 2000. Integrating biological control in the integrated pest management program for Spartina alterniflora in Willapa Bay J. Shellfish Res. 19:634.Google Scholar
  82. Wilson, J. O., Buchsbaum, R., Valiela, I., and Swain, T. 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Prog. Ser. 29:177–187.Google Scholar
  83. Zieman, J. C. and Zieman, R. T. 1989. Ecology of the seagrass meadows of the west coast of Florida: A community profile. Biological Report US Fish and Wildlife Service, 168 pp.Google Scholar
  84. Zieman, J. C., Fourqurean, J. W., and Frankovich, T. A. 1999. Seagrass Die-off in Florida Bay: Long-term Trends in Abundance and Growth of Turtle Grass, Thalassia testudinum. Estuaries 22:460–470.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CharlestonCharlestonUSA
  2. 2.Graduate College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations