Advertisement

Metabolic Brain Disease

, Volume 14, Issue 4, pp 253–263 | Cite as

GABA-Transaminase Antisense Oligodeoxynucleotide Modulates Cocaine- and Pentylenetetrazol-Induced Seizures in Mice

  • Marc S. Abel
  • Neelu Kohli
Article

Abstract

The mechanism of action of many anticonvulsive agents is to increase the function of the GABAergic system. Inhibition of GABA-Transaminase (GABA-T), the degradative enzyme for GABA, increases GABA levels in the brain. In this study, antisense oligodeoxynucleotides (ASO) targeted at the start codon region of GABA-Transaminase mRNA were used to modify seizure activity. Mice were treated, by intracerebroventricular injection, with antisense oligos or appropriate controls. At various times after treatment, the animals were challenged with cocaine (70 mg/kg, i.p.) and observed for seizure activity. At 15 hours after treatment, 1.152 and 1.44 nmol antisense oligo blocked cocaine-induced seizures. There was no effect of antisense oligo 8 or 36 hours after treatment. In addition, treatment with 7.2 nmol antisense oligo prevented pentylenetetrazol-induced seizures. These data demonstrate the modulation of seizure threshold using antisense oligodeoxynucleotides to GABA-T.

Antisense Oligodeoxynucleotide Seizure GABA-Transaminase Cocaine Pentylenetetrazol GABA Antisense oligodeoxynucleotide Seizure GABA-Transaminase Cocaine Pentylenetetrazol GABA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abel, M.S. and McCandless, D.W. (1992). Elevated gamma-aminobutyric acid levels attenuate the metabolic response to bilateral ischemia [see comments]. J. Neurochem. 58:740–4.Google Scholar
  2. Braestrup, C., Nielsen, M., Honore, T., Jensen, L.H. and Petersen, E.N. (1983). Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacology 22:1451–7.Google Scholar
  3. Browne, T.R., Mattson, R.H., Penry, J.K., Smith, D.B., Treiman, D.M., Wilder, B.J., Ben-Menachem, E., Napoliello, M.J., Sherry, K.M. and Szabo, G.K. (1987). Vigabatrin for refractory complex partial seizures: multicenter single-blind study with long-term follow-up. Neurol. 37:184–189.Google Scholar
  4. Brussaard, A.B. (1997). Antisense oligonucleotides induce functional deletion of ligand gated ion channels in cultured neurons and brain explants. J. Neurosci. Methods 71:55–64.Google Scholar
  5. Gale, K. (1992). GABA and Epilepsy — Basic Concepts from Preclinical Research. Epilepsia 33:S3–S12.Google Scholar
  6. German, S.P. and German, S.M. (1996). Microperfusion of picrotoxin in the hippocampus of chronic freely moving rats through microdialysis probes: a new method of inducing partial and secondary generalized seizures. J. Neurosci. Meth. 67:113–120.Google Scholar
  7. Karle, J., Laudrup, P., Sams-Dodd, F., Mikkelsen, J.D. and Nielsen, M. (1997). Differential changes in induced seizures after hippocampal treatment of rats with antisense oligodeoxynucleotide to the GABAA receptor g2 subunit. Eur. J. Pharmacol. 340:153–160.Google Scholar
  8. Karle, J. and Nielsen, M. (1995). Modest reduction of benzodiazepine binding in rat brain in vivo induced by antisense oligonucleotide to GABAA receptor gamma 2 subunit subtype. Eur. J. Pharmacol. 291:439–41.Google Scholar
  9. Karle, J., Witt, M.R. and Nielsen, M. (1995). Antisense oligonucleotide to GABAA receptor gamma 2 subunit induces loss of neurones in rat hippocampus. Neurosci. Lett. 202:97–100.Google Scholar
  10. Karle, J., Woldbye, D.P.D., Elster, L., Diemer, N.H., Bolwig, T.G., Olsen, R.W. and Nielsen, M. (1998). Antisense Oligonucleotide to GABAA Receptor g2 Subunit Induces Limbic Status Epilepticus. J. Neurosci. Res. 54:863–869.Google Scholar
  11. Krnjevic, K.: Significance of GABA in Brain Function. New York: Wiley-Liss, Inc.; 1991Google Scholar
  12. Krnjevic, K. and Schwartz, S. (1967). The action of gamma-aminobutyric acid on cortical neurons. Exp. Brain Res. 3:320–336.Google Scholar
  13. Marley, R.J., Witkin, J.M. and Goldberg, S.R. (1991). Genetic factors influence changes in sensitivity to the convulsant properties of cocaine following chronic treatment. Brain Res. 542:1–7.Google Scholar
  14. Matilainen, R., Pitkanen, A., Ruutiainen, T., Mervaala, E., Sarlund, H. and Riekkinen, P. (1988). Effect of vigabatrin on epilepsy in mentally retarded patients: a 7 month follow up study. Neurol. 38:743–747.Google Scholar
  15. Miczek, K.A. and Weerts, E.M. (1987). Seizures in drug-treated animals [letter]. Science 235:1127–8.Google Scholar
  16. Olsen, R.W. (1982). Drug interactions at the GABA receptor-ionophore complex. Annu Rev. Pharmacol. Toxicol. 22:245–77.Google Scholar
  17. Peris, J., Jung, B.J., Resnick, A., Walker, P., Malakhova, O., Bokrand, Y. and Wielbo, D. (1998). Antisense inhibition of striatal GABAA receptor proteins decreases GABA-stimulated chloride uptake and increases cocaine sensitivity in rats. Mol. Brain Res. 57:310–320.Google Scholar
  18. Piredda, S., Lim, C.R. and Gale, K. (1985). Intracerebral site of convulsant action of bicuculline. Life Sci. 36:1295–8.Google Scholar
  19. Reith, M.E.A., Kim, S.S. and Lajtha, A. (1986). Structural requirements for cocaine congeners to interact with [3H]Batrachotoxinin A 20-a-benzoate binding sites on sodium channels in mouse brain synaptosomes. J. Biol. Chem. 16:7300–7305.Google Scholar
  20. Sabers, A. and Gram, L. (1992). Pharmacology of Vigabatrin. Pharmacology & Toxicology 70:237–243.Google Scholar
  21. Schousboe, A., Larsson, O.M. and Drogsgaard-Larsen, P.: GABA Uptake Inhibitors as Anticonvulsants. New York: Wiley-Liss, Inc.; 1991Google Scholar
  22. Tunnicliff, G. (1990). Action of inhibitors on brain glutamate decarboxylase. Int. J. Biochem. 22:1235–41.Google Scholar
  23. Tunnicliff, G.: GABA Aminotransferase Inhibitors as Potential Antiepileptic Agents. New York: Wiley-Liss, Inc.; 1991Google Scholar
  24. Twyman, R.E. and MacDonald, R.L.: Antiepileptic Drug Regulation of GABAA Receptor Channels. 1991Google Scholar
  25. Wang, K.G. (1988). Cocaine induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers. J. Gen. Physiol. 92:747–756.Google Scholar
  26. Zhang, R., Lu, Z., Zhang, X., Zhao, H., Diasio, R.B., Liu, T., Jiang, Z. and Agrawal, S. (1995). In vivo stability and disposition of a self-stabilized oligodeoxynucleotide phosphorothioate in rats. Clin. Chem. 41:836–43.Google Scholar
  27. Zhao, T.J., Rosenberg, H.C. and Chiu, T.H. (1996). Treatment with an antisense oligodeoxynucleotide to the GABAA receptor gamma 2 subunit increases convulsive threshold for beta-CCM, a benzodiazepine "inverse agonist", in rats. Eur. J. Pharmacol. 306:61–6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  1. 1.Department of Cell Biology and Anatomy FUHS/The Chicago Medical SchoolNorth ChicagoU.S.A.

Personalised recommendations