Journal of Sol-Gel Science and Technology

, Volume 26, Issue 1–3, pp 321–327 | Cite as

Sol-Gel-Derived Hybrid Coatings for Corrosion Protection

  • T.P. Chou
  • C. Chandrasekaran
  • G.Z. Cao


The corrosion resistance of sol-gel-derived, organic-inorganic, silica-based hybrid coatings was studied. Hybrid sols were prepared by copolymerizing tetraethylorthosilicate (TEOS) and 3-methacryloxypropyltrimethoxysilane (MPS) with a two-step acid-catalyst process. Hybrid coatings were dip-coated on 304 and 316 stainless steel substrates and annealed at 300°C for 30 minutes. The adhesion, flexibility, and biocompatibility of the coatings were examined. Hybrid coatings were found to be relatively dense, uniform and defect free. Electrochemical analyses showed that the coatings provided excellent corrosion protection by forming a physical barrier, which effectively separated the anode from the cathode. In addition, further experimental results revealed that the corrosion patterns are strongly dependent on the nature of the stainless steel substrates. Some possible mechanisms for corrosion breakdown associated with each type of substrate are also introduced.

sol-gel processing hybrid coatings organic-inorganic coatings corrosion protection stainless steel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Grundmeier, W. Schmidt, and M. Stratmann, Electrochimica Acta 45, 2515 (2000).Google Scholar
  2. 2.
    R. Haneda and K. Aramaki, J. Electrochem. Soc. 145, 2786 (1998).Google Scholar
  3. 3.
    W. Lu, R.L. Elsenbaumer, T. Chen, and V.G. Kulkarni, Mat. Res. Soc. Symp. Proc. 488, 653 (1998).Google Scholar
  4. 4.
    M. Guglielmi, J. Sol-Gel Sci. Tech. 1, 177 (1994).Google Scholar
  5. 5.
    D.C.L. Vasconcelos, J.N. Carvalho, M. Mantel, and W.L. Vasconcelos, J. Non-Cryst. Solids 273, 135 (2000).Google Scholar
  6. 6.
    M. Simoes, O.B.G. Assis, and L.A. Avaca, J. Non-Cryst. Solids 273, 159 (2000).Google Scholar
  7. 7.
    M. Atik, S.H. Messaddeq, F.P. Luna, and M.A. Aegerter, J. Mater. Sci. Lett. 15, 2051 (1996).Google Scholar
  8. 8.
    P. Neto, M. Atik, L.A. Avaca, and M.A. Aegerter, J. Sol-Gel Sci. Tech. 2, 529 (1994).Google Scholar
  9. 9.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).Google Scholar
  10. 10.
    A.C. Pierre, Introduction to Sol-Gel Processing (Kluwer, Boston, MA, 1998).Google Scholar
  11. 11.
    L.F. Francis, Mater. Manufacturing Process 12, 963 (1997).Google Scholar
  12. 12.
    X.H. Han, G.Z. Cao, T. Pratum, D.T. Schwartz, and B. Lutz, J. Mater. Sci. 36, 985 (2001).Google Scholar
  13. 13.
    C.M. Chan, G.Z. Cao, H. Fong, M. Sarikaya, T. Robinson, and L. Nelson, J. Mater. Res. 15, 148 (2000).Google Scholar
  14. 14.
    J. Wen and G.L. Wilkes, J. Inorganic and Organometallic Polymers 5, 343 (1995).Google Scholar
  15. 15.
    J.S. Park and J.D. Mackenzie, J. Amer. Ceram. Soc. 78, 2669 (1995).Google Scholar
  16. 16.
    S.H. Messaddeq, S.H. Pulcinelli, C.V. Santilli, A.C. Guastaldi, and Y. Messaddeq, J. Non-Cryst. Solids 247, 164 (1999).Google Scholar
  17. 17.
    M. Atik, F.P. Luna, S.H. Messaddeq, and M.A. Aegerter, J. Sol-Gel Sci. Tech. 8, 517 (1997).Google Scholar
  18. 18.
    T.P. Chou, C. Chandrasekaran, S.J. Limmer, S. Seraji, Y. Wu, M. Forbess, C. Nguyen, and G.Z. Cao, J. Non-Cryst. Solids 290, 153 (2001).Google Scholar
  19. 19.
    L.L. Hench, Sol-Gel Silica: Properties, Processing and Technology Transfer (Noyes, Westwood, New Jersey, 1998).Google Scholar
  20. 20.
    R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley and Sons, New York, 1979).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • T.P. Chou
  • C. Chandrasekaran
  • G.Z. Cao

There are no affiliations available

Personalised recommendations