Heart Failure Reviews

, Volume 7, Issue 4, pp 391–405 | Cite as

Nitric Oxide and Cardioprotection During Ischemia-Reperfusion

  • Bodh I. Jugdutt
Article

Abstract

Coronary artery reperfusion is widely used to restore blood flow in acute myocardial infarction and limit its progression. However, reperfusion of ischemic myocardium results in reperfusion injury and persistent ventricular dysfunction even when achieved after brief periods of ischemia. Normally, small amounts of nitric oxide (NO) generated by endothelial NO synthase (eNOS) regulates vascular tone. Ischemia-reperfusion triggers the release of oxygen free radicals (OFRs) and a cascade involving endothelial dysfunction, decreased eNOS and NO, neutrophil activation, increased cytokines and more OFRs, increased inducible NO synthase (iNOS) and marked increase in NO, excess peroxynitrite formation, and myocardial injury. Low doses of NO appear to be beneficial and high doses harmful in ischemia-reperfusion. eNOS knock-out mice confirm that eNOS-derived NO is cardioprotective in ischemia-reperfusion. iNOS overexpression increases peroxynitrite but did not cause severe dysfunction. Increased angiotensin II (AngII) after ischemia-reperfusion inactivates NO, forms peroxynitrite and produces cardiotoxic effects. Beneficial effects of angiotensin-converting-enzyme inhibition and AngII type 1 (AT1) receptor blockade after ischemia-reperfusion are partly mediated through AngII type 2 (AT2) receptor stimulation, increased bradykinin and NO. Interventions that enhance NO availability by increasing eNOS might be beneficial after ischemia-reperfusion.

nitric oxide ischemia-reperfusion peroxynitrite angiotensin nitroglycerin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan TJ, Antman EM, Brooks NH, et al. Update: ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on management of acute myocardial infarction). J Am Coll Cardiol 1999;34:89–911.Google Scholar
  2. 2.
    Hearse DJ. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 1997;9:60–616.Google Scholar
  3. 3.
    Braunwald E, Kloner RA. The stunned myocardium: Prolonged, post-ischemic ventricular dysfunction. Circulation1982;66:114–1149.Google Scholar
  4. 4.
    Braunwald E, Kloner RA. Myocardial reperfusion: A double-edged sword? J Clin Invest 1985;76:171–1719.Google Scholar
  5. 5.
    Topol EJ. Early myocardial reperfusion: An assessment of current strategies in acute myocardial infarction. Eur Heart J 1996;17(Suppl. E):4–48.Google Scholar
  6. 6.
    Kloner RA, Jennings RB. Consequences of brief ischemia: Stunning, preconditioning, and their clinical implications. Part 1. Circulation 2001;104:298–2989.Google Scholar
  7. 7.
    Kloner RA, Jennings RB. Consequences of brief ischemia: Stunning, preconditioning, and their clinical implications. Part 2. Circulation 2001;104:315–3167.Google Scholar
  8. 8.
    Przyklenk K, Kloner RA. 1986. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium.” Circ Res 1986;58:14–156.Google Scholar
  9. 9.
    Bolli R, Jeroudi MO, Patel BS, et al. Marked reduction of free radical generation and contractile dysfuncrtion by antioxidant therapy begun at the time of reperfusion: Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 1989;65:60–622.Google Scholar
  10. 10.
    Bolli R. Mechanisms of myocardial “stunning.” Circulation 1990;82:72–738.Google Scholar
  11. 11.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good the bad, and the ugly. Am J Physiol 1996;271:C142–C1437.Google Scholar
  12. 12.
    Becker LC, Jeremy RW, Schaper J, Schaper W. Ultrastructural assessment of myocardial necrosis occurring during ischemia and –h reperfusion in the dog. Am J Physiol 1999;277:H24–H252.Google Scholar
  13. 13.
    Hochman JS, Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 1987;75:29–306.Google Scholar
  14. 14.
    Boyle MP, Weisman HF. Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation1993;88:287–2883.Google Scholar
  15. 15.
    Jugdutt BI. Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol (Heart and Circulatory Physiology)1997;272: H120–H1211.Google Scholar
  16. 16.
    Kim CB, Braunwald E. Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Circulation 1993;88:242–2436.Google Scholar
  17. 17.
    Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Impact of left ventricular unloading after late reperfusion of canine anterior myocardial infarction on remodeling and function using isosorbide-–mononitrate. Circulation1995;92:92–934.Google Scholar
  18. 18.
    Ellis SG, Henschke CL, Sandor T, Wynne J, Braunwald E, Kloner RA. Predictors of success for coronary angioplasty performed for AMI. J Am Coll Cardiol 1988;12:140– 1415.Google Scholar
  19. 19.
    Ambrosio G, Becker LC, Hutchins GM, Weisman HR, Weisfeldt ML. Reduction in experimental infarct size by recombinant human superoxide dismutase: Insights into the pathophysiology of reperfusion injury. Circulation 1986;74:142–1433.Google Scholar
  20. 20.
    Jugdutt BI. Nitroglycerin. In: Bates E, ed. Thrombolysis and Adjunctive Therapy for Myocardial Infarction. New York: Dekker, 1992:11–144.Google Scholar
  21. 21.
    Jugdutt BI, Schwarz-Michorowski BL, Tymchak WJ, Burton JR. Prompt improvement of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction. Cardiology 1997;88:17–179.Google Scholar
  22. 22.
    Jugdutt BI, Humen DP. Limitation of left ventricular hypertrophy by ACE inhibition after anterior Qwave myocardial infarction. Cardiology 1998;89:28– 290.Google Scholar
  23. 23.
    Jugdutt BI, Tymchak WJ, Humen DP, Gulamhusein S, Tang SB. Effect of thrombolysis and prolonged captopril and nitroglycerin on infarct size and remodeling in transmural myocardial infarction. J Am Coll Cardiol 1992;19(Suppl. A):205A (Abstract).Google Scholar
  24. 24.
    Ragosta M, Camarano G, Kaul S, Powers ER, Sarembock IJ, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. New insights using myocardial contrast echocardiography. Circulation 1994;89:256–2569.Google Scholar
  25. 25.
    Ito H, Okamura A, Iwakura K, Mauyama T, Hori M, Takiuchi S, Negoro S, Nakatsuchi Y, Taniyama Y, Higashino Y, Fuji K, Minamino T. Myocardial perfusion patterns related to thrombolysis in myocardial infarction grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 1996;93:193–1999.Google Scholar
  26. 26.
    Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 1974;54:149–1508.Google Scholar
  27. 27.
    White FC, Sanders M, Bloor CM. Regional redistribution of myocardial blood flow after coronary occlusion and reperfusion in the conscious dog. Am J Cardiol 1978;42:23–243.Google Scholar
  28. 28.
    Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992;85:169–1705.Google Scholar
  29. 29.
    Cobb FR, Bache RJ, Rivas F, Greenfield JC Jr. Local effects of acute cellular injury on regional myocardial blood flow. J Clin Invest 1976;57:135–1368.Google Scholar
  30. 30.
    Ambrosio G, Weisman HF, Mannisi JA, Becker LC. Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 1989;80:184–1861.Google Scholar
  31. 31.
    Heyndrickx GR, Amano J, Patrick TA, Manders WT, Rogers GG, Rosendorff C, Vatner SF. Effects of coronary artery reperfusion on regional myocardial blood flow and function in conscious baboons. Circulation 1985;71:102– 1037.Google Scholar
  32. 32.
    Willerson JT, Watson JT, Hutton I, Templeton GH, Fixler DE. Reduced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ Res 1975;36:77–781.Google Scholar
  33. 33.
    Johnson WB, Malone SA, Pantely GA, Anselone CG, Bristow JD. No reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 1988;78:46–472.Google Scholar
  34. 34.
    Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: Which comes first? Circulation 1980;62:94– 952.Google Scholar
  35. 35.
    Tsao PS, Aoki N, Lefer DJ, Johnson G III, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation 1990;82:140–1412.Google Scholar
  36. 36.
    Lefer AM, Hayward R. The role of nitric oxide in ischemiareperfusion. In: Loscalzo J, Vita JA, eds. Contemporary Cardiology, vol 4: Nitric Oxide and the Cardiovascular System. Humana Press Inc., 2000:35–380.Google Scholar
  37. 37.
    Hayward R, Lefer AM. Time course of endothelialneutrophil interaction in splanchnic artery ischemiareperfusion. Am J Physiol 1998;275:H208–H2086.Google Scholar
  38. 38.
    Viehman GE, Ma XL, Lefer DJ, Lefer AM. Time course of endothelial dysfunction and myocardial injury during coronary arterial occlusion. Am J Physiol 1991;261:H87–H881.Google Scholar
  39. 39.
    Arminger LC, Gavin JB. Changes in the microvasculature of ischemia and infarcted myocardium. Lab Invest 1975;33:5–56.Google Scholar
  40. 40.
    Mehta JL, Nichols WW, Donnelly WH, Lawson DL, Saldeen TG. Impaired canine coronary vasodilator response to acetylcholine and bradykinin after occlusionreperfusion. Circ Res 1989;64:4–54.Google Scholar
  41. 41.
    Lefer AM, Tsao P, Aoki N, Palladino MA Jr. Mediation of cardioprotection by transforming growth factor-beta. Science 1990;249:6–64.Google Scholar
  42. 42.
    Zweier JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: Evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci USA 1988;85:404–4050.Google Scholar
  43. 43.
    Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 1985;17:14–152.Google Scholar
  44. 44.
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:15–163.Google Scholar
  45. 45.
    Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap ?α-phenyl N-tert-butyl nitrone. J Clin Invest 1988;82:47– 485.Google Scholar
  46. 46.
    Zweier JL. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 1988;263:135–1357.Google Scholar
  47. 47.
    Lamb FS, King CM, Harrell K, Burkel W, Webb RC. Free radical-mediated endothelial damage in blood vessels after electrical stimulation. Am J Physiol 1987;252:H104– H1046.Google Scholar
  48. 48.
    Stewart DJ, Pohl U, Bassenge E. Free radicals inhibit endothelium-dependent dilation in the coronary resistance bed. Am J Physiol 1988;255:H76–H769.Google Scholar
  49. 49.
    Tsao PS, Lefer AM. Time course and mechanism of endothelial dysfunction in isolated ischemic-and hypoxicperfused rat hearts. Am J Physiol 1990;259:H166– H1666.Google Scholar
  50. 50.
    Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320:45–456.Google Scholar
  51. 51.
    Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 1989;80:181–1827.Google Scholar
  52. 52.
    Granger DN, Benoit JN, Suzuki M, Grisham MB. Leukocyte adherence to venular endothelium during ischemiareperfusion. Am J Physiol 1989;257:G68–G688.Google Scholar
  53. 53.
    Tsao PS, Ma XL, Lefer AM. Activated neutrophils aggravate endothelial dysfunction after reperfusion of the ischemic feline myocardium. Am Heart J 1992;123:146– 1471.Google Scholar
  54. 54.
    Ma XL, Tsao PS, Viehman GE, Lefer AM. Neutrophilmediated vasoconstriction and endothelial dysfunction in low-flow perfusion-reperfused cat coronary artery. Circ Res 1991;69:9–106.Google Scholar
  55. 55.
    Werns SW, Lucchesi BR. Free radicals and ischemic tissue injury. Trends Pharmacol Sci 1990;11:16–166.Google Scholar
  56. 56.
    Tsao PS, Lefer AM. Recovery of endothelial function following myocardial ischemia and reperfusion in rats. J Vasc Med Biol 1991;3:–10.Google Scholar
  57. 57.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:926–9269.Google Scholar
  58. 58.
    Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:52–526.Google Scholar
  59. 59.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:10–142.Google Scholar
  60. 60.
    Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990;101:74–752.Google Scholar
  61. 61.
    Davenpeck KL, Gauthier TW, Lefer AM. Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 1994;107:105–1058.Google Scholar
  62. 62.
    Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 1993;72:40–412.Google Scholar
  63. 63.
    Weyrich AS, Ma XL, Lefer AM. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 1992;86:27–288.Google Scholar
  64. 64.
    Lefer DJ, Nakanishi K, Vinten-Johansen J, Ma XL, Lefer AM. Cardiac venous endothelial dysfunction after myocardial ischemia and reperfusion in dogs. Am J Physiol 1992;263:H85–H856.Google Scholar
  65. 65.
    Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991;88:465–4655.Google Scholar
  66. 66.
    Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation 1996;94:142–1429.Google Scholar
  67. 67.
    Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, Yoshimura M, Motoyama T, Inobe Y, Kawano H. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 1996;94:26–271.Google Scholar
  68. 68.
    Butcher EC. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 1991;67:103–1036.Google Scholar
  69. 69.
    Weyrich AS, Buerke M, Albertine KH, Lefer AM. Time course of coronary vascular endothelial adhesion molecule expression during reperfusion of the ischemic feline myocardium. J Leukoc Biol 1995;57:4–55.Google Scholar
  70. 70.
    Spertini O, Kansas GS, Munro JM, Griffin JD, Tedder TF. Regulation of leukocyte migration by activation of the leukocyte adhesion module-1 (LAM-1) selectin. Nature 1991;349:69–694.Google Scholar
  71. 71.
    Kishimoto TK, Jutila M, Berg EL, Butcher EC. Neutrophil MAC-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 1989;245:123– 1241.Google Scholar
  72. 72.
    Kubes P, Jutila M, Payne D. Therapeutic potential of inhibiting leukocyte rolling in ischemia-reperfusion. J Clin Invest 1995;95:251–2519.Google Scholar
  73. 73.
    Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, Schelling ME, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 1989;257:H174–H1745.Google Scholar
  74. 74.
    Ma XL, Tsao PS, Lefer AM. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 1991;88:123– 1243.Google Scholar
  75. 75.
    Ma Xl, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation 1992;86:93–946.Google Scholar
  76. 76.
    Zhao ZQ, Lefer DJ, Sato H, Hart KK, Jeffords PR, Vinten-Johansen J. Monoclonal antibody to ICAM-1 preserves postischemic blood flow and reduces infarct size after ischemia-reperfusion in the rabbit. J Leukoc Biol 1997;62:29–300.Google Scholar
  77. 77.
    Gumina RJ, Schultz JE, Yao Z, Kenny D, Warltier DC, Newman PJ, et al. Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation 1996;94:332–3333.Google Scholar
  78. 78.
    Murohara T, Delyani JA, Albeda SM, Lefer AM. Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats. J Immunol 1996;156:355–3557.Google Scholar
  79. 79.
    Murohara T, Guo JP, Lefer AM. Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury. J Pharm Exp The 1995;274:124–1253.Google Scholar
  80. 80.
    Kupatt C, Weber C, Wolf DA, Becker BF, Smith TW, Kelly RA. Nitric oxide attenuates reoxygeneration-induced ICAM-1 expression in coronary microvascular endothelium: Role of NF-KB. J Mol Cell Cardiol 1997;29:259– 2609.Google Scholar
  81. 81.
    Gaboury JP, Anderson DC, Kubes P. Molecular mechanisms involved in superoxide-induced leukocyteendothelial cell interactions in vivo. Am J Physiol 1994;266:H63–H642.Google Scholar
  82. 82.
    Mataki H, Inagaki T, Yokoyama M, Maeda S. ICAM-1 expression and cellular injury in cultured endothelial cells under hypoxia/reoxygenation. Kobe J Med Sci 1994;40:4–63.Google Scholar
  83. 83.
    Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 1990;343:75–760.Google Scholar
  84. 84.
    Gopalakrishna R, Chen ZH, Gundimeda U. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 1993;268:2718–27185.Google Scholar
  85. 85.
    Takai Y, Kaibuchi K, Matsubara T, Nishizuka Y. Inhibitory action of guanosine 3′,5′-monophosphate on thrombin-induced phosphatidylinositol turnover and protein phosphorylation in human platelets. Biochem Biophys Res Commun 1981;101:6–67.Google Scholar
  86. 86.
    Scalia R, Murohara T, Delyani JA, Nossuli TO, Lefer AM. Myocardial protection by N,N,N-trimethylsphingosine in ischemia reperfusion injury is mediated by inhibition of P-selectin. J Leukoc Biol 1996;59:31–324.Google Scholar
  87. 87.
    De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995;96:6–68.Google Scholar
  88. 88.
    Spiecker M, Darius H, Kaboth K, Hubner F, Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 1998;63:73–739.Google Scholar
  89. 89.
    Armstead VE, Minchenko AG, Schuhl RA, Hayward R, Nossuli TO, Lefer AM. Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am J Physiol 1997;273:H74–H746.Google Scholar
  90. 90.
    Eppihimer MJ, Russell J, Anderson DC, Epstein CJ, Laroux S, Granger DN. Modulation of P-selectin expression in the postischemic intestinal microvasculature. Am J Physiol 1997;273:G132–G1332.Google Scholar
  91. 91.
    Barnes PJ. Nuclear factor-KB. Int J Biochem Cell Biol 1997;29:86–870.Google Scholar
  92. 92.
    Fialkow L, Chan CK, Grinstein S, Downey GP. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates. J Biol Chem 1993;268:1713–17137.Google Scholar
  93. 93.
    Peng HB, Libby P, Liao JK. Induction and stabilization of I?B? by nitric oxide mediates inhibition of NF-KB. J Biol Chem 1995;270:1421–14219.Google Scholar
  94. 94.
    Aoki N, Johnson G III, Lefer AM. Beneficial effects of two forms of NO administration in feline splanchnic artery occlusion shock. Am J Physiol 1990;258:G27– G281.Google Scholar
  95. 95.
    Johnson G III, Tsao PS, Lefer AM. Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit Care Med 1991;19:24–252.Google Scholar
  96. 96.
    Pennington DG, Vezeridis MP, Geffin G, O'Keefe DD, Lappas DG, Daggett WM. Quantitative effects of sodium nitroprusside on coronary hemodynamics and left ventricular function in dogs. Circ Res 1979;45:35–359.Google Scholar
  97. 97.
    Crystal GJ, Gurevicius J. Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts. Am J Physiol 1996;270:H156–H1576.Google Scholar
  98. 98.
    Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991;83:203–2047.Google Scholar
  99. 99.
    Fox-Robichaud A, Payne D, Hasan SU, Ostrovsky L, Fairhead T, Reinhardt P, Kubes P. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Invest 1998;101:249– 2505.Google Scholar
  100. 100.
    Tymchak WJ, Michorowski BL, Burton JR, Jugdutt BI. Preservation of left ventricular function and topography with combined reperfusion and intravenous nitroglycerin in acute myocardial infarction (Abstr). J Am Coll Cardiol 1988;11:90A.Google Scholar
  101. 101.
    Johnson G III, Tsao PS, Mulloy D, Lefer AM. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther 1990;252:3–41.Google Scholar
  102. 102.
    Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemiareperfusion. J Pharmacol Exp Ther 1992;260:66–675.Google Scholar
  103. 103.
    Siegfried MR, Carey C, Ma XL, Lefer AM. Benefi-cial effects of SPM-5185, a cysteine-containing NO donor in myocardial ischemia-reperfusion. Am J Physiol 1992;263:H77–H777.Google Scholar
  104. 104.
    Delyani JA, Nossuli TO, Scalia R, Thomas G, Garvey DS, Lefer AM. S-nitrosylated tissue-type plasminogen activator protects against myocardial ischemia/reperfusion injury in cats: Role of the endothelium. J Pharmacol Exp Ther 1996;279:117–1180.Google Scholar
  105. 105.
    Wainwright CL, Martorana PA. Pirsidomine, a novel nitric oxide donor, suppresses ischemic arrhythmias in anesthetized pigs. J Cardiovasc Pharmacol 1993;22:S4– S50.Google Scholar
  106. 106.
    Hasebe N, Shen YT, Vatner SF. Inhibition of endotheliumderived relaxing factor enhances myocardial stunning in conscious dogs. Circulation 1993;88:286–2871.Google Scholar
  107. 107.
    Nakanishi K, Vinten-Johansen J, Lefer DJ, Zhao Z, Fowler WC III, McGee DS, Johnston WE. Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 1992;263:H165–H1658.Google Scholar
  108. 108.
    Pabla R, Buda AJ, Flynn DM, Blesse SA, Shin AM, Curtis MJ, Lefer DJ. Nitric oxide attenuates neutrophilmediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 1996;78:6–72.Google Scholar
  109. 109.
    Fei L, Baron AD, Henry DP, Zipes DP. Intrapericardial delivery of L-arginine reduces the increased severity of ventricular arrhythmias during sympathetic stimulation in dogs with acute coronary occlusion: Nitric oxide modulates sympathetic effects on ventricular electrophysiological properties. Circulation 1997;96:404–4049.Google Scholar
  110. 110.
    Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998;97:212–2128.Google Scholar
  111. 111.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:162–1624.Google Scholar
  112. 112.
    Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:48–487.Google Scholar
  113. 113.
    Szabo C, Salzman AL, Ischiropoulos H. Peroxynitritemediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett 1995;372:22– 232.Google Scholar
  114. 114.
    Wang P, Zweier JL. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 1996;271:2922–29230.Google Scholar
  115. 115.
    Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 1997;33:42–432.Google Scholar
  116. 116.
    Liu P, Hock CE, Nagele R, Wong PYK. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 1997;272:H232–H2336.Google Scholar
  117. 117.
    Zhang Y, Bissing JW, Xu L, Ryan AJ, Martin SM, Miller FJ Jr, Kregel KC, Buettner GR, Kerber RE. Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model. J Am Coll Cardiol 2001;38:54–554.Google Scholar
  118. 118.
    Kelm M, Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res 1990;66:156–1575.Google Scholar
  119. 119.
    Guo JP, Murohara T, Buerke M, Scalia R, Lefer AM. Direct measurement of nitric oxide release from vascular endothelial cells. J Appl Physiol 1996;81:77–779.Google Scholar
  120. 120.
    Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Radic Biol Med 1998;25:40–433.Google Scholar
  121. 121.
    Wang P, Samouilov A, Kuppasamy P, Zweier JL. Quantitation of superoxide, nitric oxide, and peroxynitrite generation in the postischemic heart Circulation 1996;94:I–467 (Abstract).Google Scholar
  122. 122.
    Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, Grisham MB. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 1996;271:4–47.Google Scholar
  123. 123.
    Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem 1996;271:1919–19208.Google Scholar
  124. 124.
    Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998;391:39–397.Google Scholar
  125. 125.
    Lefer DJ, Scalia R, Campbell B, Nossuli T, Hayward R, Salamon M, Grayson J, Lefer AM. Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 1997;99:68–691.Google Scholar
  126. 126.
    Nossuli TO, Hayward R, Scalia R, Lefer AM. Peroxynitrite reduces myocardial infarct size and preserves coronary endothelium after ischemia and reperfusion in cats. Circulation 1997;96:231–2324.Google Scholar
  127. 127.
    Moro MA, Darley-Usmar VM, Lizasoain I, Su Y, Knowles RG, Radomski MW, Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol 1995;116:199–2004.Google Scholar
  128. 128.
    Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM. Mechanisms of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol 1998;275:H50–H519.Google Scholar
  129. 129.
    Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 1992;89:767– 7677.Google Scholar
  130. 130.
    Hayashi Y, Sawa Y, Nishimura M, Tojo SJ, Fukuyama N, Nakazawa H, Matsuda H. P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production. J Thorac Cardiovasc Surg 2000;120:55–565.Google Scholar
  131. 131.
    Schulz R, Wambolt R. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc Res 1995;30:43–439.Google Scholar
  132. 132.
    Schulz R, Dodge KL, Lopaschuk GD, Clanachan AS. Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol 1997;272:H121– H1219.Google Scholar
  133. 133.
    Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 2002;53:16–174.Google Scholar
  134. 134.
    Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994;78:91–918.Google Scholar
  135. 135.
    Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996;79:36–380.Google Scholar
  136. 136.
    Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA. Cytokineinducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 1994;269:2758– 27588.Google Scholar
  137. 137.
    Depre C, Havaux X, Renkin J, Vanoverschelde JL, Wijns W. Expression of inducible nitric oxide synthase in human coronary atherosclerotic plaque. Cardiovasc Res 1999;41:46–472.Google Scholar
  138. 138.
    Maulik N, Engelman DT, Watanabe M, Engelman RM, Maulik G, Cordis GA, Das DK. Nitric oxide signaling in ischemic heart. Cardiovasc Res 1995;30:59–601.Google Scholar
  139. 139.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995;377:23–242.Google Scholar
  140. 140.
    Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1996;93:1317– 13181.Google Scholar
  141. 141.
    Godecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Godecke S, Schrader J. Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 1998;82:18–194.Google Scholar
  142. 142.
    Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL. Interaction of genetic defi-ciency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest 1998;101:122–1232.Google Scholar
  143. 143.
    Lefer DJ, Girod WG, Jones SP, Palazzo AJ, Fishman MC, Huang PL, et al. Myocardial ischemia-reperfusion injury s exacerbated in ecNOS deficient mice. FASEB J 1998;12:A325.Google Scholar
  144. 144.
    Sumeray MS, Rees DD, Yellon DM. Infarct size and nitric oxide synthase in murine myocardium. JMol Cell Cardiol 2000;32:3–42.Google Scholar
  145. 145.
    Yang XP, Liu YH, Shesely EG, Bulagannawar M, Liu F, Carretero OA. Endothelial nitric oxide gene knockout mice: Cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury. Hypertension 1999;34: 2–30.Google Scholar
  146. 146.
    Bell RM, Yellon DM. The contribution of endothelial nitric oxide synthase to early ischaemic preconditioning: The lowering of the preconditioning threshold. An investigation in eNOS knockout mice. Cardiovasc Res 2001;52:27–780.Google Scholar
  147. 147.
    von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau VJ. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995;92:113–1141.Google Scholar
  148. 148.
    MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995;81:64–650.Google Scholar
  149. 149.
    Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995;375:40–411.Google Scholar
  150. 150.
    Laubach VE, Shesely EG, Smithies O, Sherman PA. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 1995;92:1068–10692.Google Scholar
  151. 151.
    Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, Shah PK, Cercek B. Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circ Res 1999;85:119–1198.Google Scholar
  152. 152.
    Tolbert T, Thompson JA, Bouchard P, Oparil S. Estrogeninduced vasoprotection is independent of inducible nitric oxide synthase expression: Evidence from the mouse carotid artery ligation model. Circulation 2001;104:274– 2745.Google Scholar
  153. 153.
    Xi L, Jarrett NC, Hess ML, Kukreja RC. Myocardial ischemia/ reperfusion injury in the inducible nitric oxide synthase knockout mice. Life Sci 1999;65:93–945.Google Scholar
  154. 154.
    Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002;109:73–743.Google Scholar
  155. 155.
    Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, Schrader J. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 2002;90: 9–99.Google Scholar
  156. 156.
    Duncker DJ, Bache RJ. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res 1994;74:62–640.Google Scholar
  157. 157.
    Youhua Z, Shouchun X. Increased vulnerability of hypertrophied myocardium to ischemia and reperfusion injury. Relation to cardiac renin-angiotensin system. Chin Med J 1995;108:2–32.Google Scholar
  158. 158.
    Sun Y, Weber KT. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 1994;28:162–1628.Google Scholar
  159. 159.
    Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation 1993;87(5 Suppl):IV9–96.Google Scholar
  160. 160.
    Brunner HR. Experimental and clinical evidence that angiotensin II is an independent risk factor for cardiovascular disease. Am J Cardiol 2001;87:3C-9C.Google Scholar
  161. 161.
    Hilgers KF, Veelken R, Muller DN, Kohler H, Hartner A, Botkin SR, Stumpf C, Schmieder RE, Gomez RA. Renin uptake by the endothelium mediates vascular angiotensin formation. Hypertension 2001;38:24–248.Google Scholar
  162. 162.
    Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H Oxidase: Role in cardiovascular biology and disease. Circ Res 2000;86:49–501.Google Scholar
  163. 163.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000;87:84–844.Google Scholar
  164. 164.
    Dzau VJ. Tissue angiotensin and pathobiology of vascular disease. A unifying hypothesis. Hypertension 2001;37:104–1052.Google Scholar
  165. 165.
    Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 1998;83:118–1191.Google Scholar
  166. 166.
    Xu Y, Clanachan AS, Jugdutt BI. Enhanced expression of AT2R, IP3R and PKCε during cardioprotection induced by AT2R blockade. Hypertension 2000;36:50–510.Google Scholar
  167. 167.
    Xu Y, Menon V, Jugdutt BI. Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-ε in acutely reperfused myocardial infarction. Effect of UP26–6 and losartan on AT1 and AT2 receptor expression, and IP3 receptor and PKCεproteins. J Renin-Angiotensin Aldosterone System 2000;1:18–195.Google Scholar
  168. 168.
    Jugdutt BI, Xu Y, Balghith M, Moudgil R, Menon V. Cardioprotection induced by AT1R blockade after reperfused myocardial infarction: Association with regional increase in AT2R, IP3R and PKCε proteins and cGMP. J Cardiovasc Pharmacol Ther 2000;5:30–311.Google Scholar
  169. 169.
    Moudgil R, Xu Y, Menon V, Jugdutt BI. Effect of chronic pretreatment with AT1 receptor antagonism on postischemic functional recovery andAT1/AT2 receptor proteins in isolated working rat hearts. J Cardiovasc Pharmacol Ther 2001;6:18–188.Google Scholar
  170. 170.
    Jugdutt BI, Xu Y, Balghith M, Menon V. Cardioprotective effects of angiotensin II type 1 receptor blockade with candesartan after reperfused myocardial infarction: Role of angiotensin II type 2 receptor. J Renin-Angiotensin Aldosterone System 2001;2:S16–S166.Google Scholar
  171. 171.
    Jugdutt BI, Balghith M. Enhanced regional AT2 receptor and PKCε expression during cardioprotection induced by AT1 receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin Aldosterone System 2001;2:13–140.Google Scholar
  172. 172.
    Moudgil R, Menon V, Xu Y, Musat-Marcu S, Jugdutt BI. Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J Hypertension 2001;19:112–1129.Google Scholar
  173. 173.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation and gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995;95:4–54.Google Scholar
  174. 174.
    Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 1997;95:120–1206.Google Scholar
  175. 175.
    Garg UC, Hassid A. Nitric-oxide vasodilators and –bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989;83:177–1777.Google Scholar
  176. 176.
    Unger T, Gohlke P. Tissue renin-angiotensin systems in the heart and vasculature: Possible involvement in the cardiovascular actions of converting enzyme inhibitors. Am J Cardiol 1990;65:3–101.Google Scholar
  177. 177.
    Linz W, Schölkens BA. A specific β2-bradykinin receptor antagonistHOE140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 1992;105:77–772.Google Scholar
  178. 178.
    Wiemer G, Schölkens BA, Becker RHA, Busse R. Ramprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 1992;18:55–563.Google Scholar
  179. 179.
    Wiemer G, Schlkens BA, Wagner A, Heitsch H, Linz W. The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens 1993;11:S23–S235.Google Scholar
  180. 180.
    Zanzinger J, Zheng X, Bassenge E. Endothelium dependent vasomotor responses to endogenous agonists are potentiated following ACE inhibition by a bradykinin dependent mechanism. Cardiovasc Res 1994;28:20–214.Google Scholar
  181. 181.
    Hall AS, Tan L-B, Ball SG. Inhibition of ACE/kininase-II, acute myocardial infarction, and survival. Cardiovasc Res 1994;28:19–198.Google Scholar
  182. 182.
    McDonald KM, Mock J, D'Aloia A, Parrish T, Hauer K, Francis G, Stillman A, Cohn JN. Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 1995;91:204–2048.Google Scholar
  183. 183.
    Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. Effects of angiotensinconverting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: Role of kinins and angiotensin type 2 receptors. J Clin Invest 1997;99:192–1935.Google Scholar
  184. 184.
    Jalowy A, Schulz R, Dorge H, Behrends M, Heush G. Infarct size reduction by AT1 receptor blockade through a signal cascade of AT2receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 1998;32:178– 1796.Google Scholar
  185. 185.
    Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 1999;99:2–25.Google Scholar
  186. 186.
    Dörge H, Behrends M, Schulz R, Jalowy A, Heusch G. Attenuation of myocardial stunning by the AT1 receptor antagonist candesartan. Basic Res Cardiol 1999;94:20– 214.Google Scholar
  187. 187.
    Ford WR, Clanachan AS, Jugdutt BI. Opposite effects of angiotensin receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 1996;94:308–3089.Google Scholar
  188. 188.
    Xu Y, Dyck J, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI. Angiotensin II type 1 and type 2 receptor protein after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol Heart Circ Physiol 2002;282:H120–H1215.Google Scholar
  189. 189.
    Liu Y-H, Yang X-P, Sharov VG, Sigmon DH, Sabbah HN, Carretero OA. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension 1996;27:–13.Google Scholar
  190. 190.
    Ping P, Takano H, Zhang J, Tang X-L, Qiu Y, Li RCX, Banerjee S, Dawn B, Balafonova Z, Bolli R. Isoformselective activation of protein kinase C by nitric oxide in the heart of conscious rabbits. A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 1999;84:58–604.Google Scholar
  191. 191.
    Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A. Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 1998;31:34–348.Google Scholar
  192. 192.
    Jugdutt BI. New advances in the use of AT1 receptor blockers (ARBs). In: Proceedings, 2nd International Congress on heart Disease: New Trends in Research, Diagnosis and Treatment. Medimond A. Kimchi ed. New Jersey: Medical Publishers, 2001:53–538.Google Scholar
  193. 193.
    Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, Konstam MA, Riegger G, Klinger GH, Neaton J, Sharma D, Thiyagarajan B, on behalf of the ELITE II investigators. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: Randomized trial—The Losartan Heart Failure Survival Study ELITE II. Lance 2000;355:158–1587.Google Scholar
  194. 194.
    McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J, Tsuyuki RT, White M, Rouleau J, Latini R, Maggioni A, Young J, Pogue J. Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 1999;100:105–1064.Google Scholar
  195. 195.
    Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001;345:166–1675.Google Scholar
  196. 196.
    de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moncada S. Nitric oxide synthase activities in human myocardium. Lancet 1993;341:8–85.Google Scholar
  197. 197.
    Fukuchi M, Hussain SN, Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: Their relation to lesion site and beta-adrenergic receptor therapy. Circulation 1998;98:13–139.Google Scholar
  198. 198.
    Hare JM, Givertz MM, Creager MA, Colucci WS. Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: Potentiation of beta-adrenergic inotropic responsiveness. Circulation 1998;97:16–166.Google Scholar
  199. 199.
    Drexler H, Kastner S, Strobel A, Studer R, Brodde OE, Hasenfuss G. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol 1998;32:95– 963.Google Scholar
  200. 200.
    Méry PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991;88:119–1201.Google Scholar
  201. 201.
    Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ. Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 1999;99:300–3016.Google Scholar
  202. 202.
    Kichuk MR, Seyedi N, Zhang X, Marboe CC, Michler RE, Addonizio LJ, Kaley G, Nasjletti A, Hintze TH. Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 1996;94:4–51.Google Scholar
  203. 203.
    Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84:2–33.Google Scholar
  204. 204.
    Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999;84:25–256.Google Scholar
  205. 205.
    Haunstetter A, Izumo S. Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circ Res 1998;82:111–1129.Google Scholar
  206. 206.
    Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;76:94–956.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Bodh I. Jugdutt

There are no affiliations available

Personalised recommendations