Neurochemical Research

, Volume 23, Issue 8, pp 1085–1091 | Cite as

Interference of S-Alkyl Derivatives of Glutathione with Brain Ionotropic Glutamate Receptors

  • Zsolt Jenei
  • Réka Janáky
  • Vince Varga
  • Pirjo Saransaari
  • Simo S. Oja


The effects of glutathione, glutathione sulfonate and S-alkyl derivatives of glutathione on the binding of glutamate and selective ligands of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA receptors were studied with mouse synaptic membranes. The effects of glutathione and its analogues on 45Ca2+ influx were also estimated in cultured rat cerebellar granule cells. Reduced and oxidized glutathione, glutathione sulfonate, S-methyl-, -ethyl-, -propyl-, -butyl- and -pentylglutathione inhibited the Na+-independent binding of L-[3H]glutamate. They strongly inhibited also the binding of (S)-2-amino-3-hydroxy-5-[3H]methyl-4-isoxazolepropionate [3H]AMPA (IC50 values: 0.8–15.9 μM). S-Alkylation of glutathione rendered the derivatives unable to inhibit [3H]kainate binding. The NMDA-sensitive binding of L-[3H]glutamate and the binding of 3-[(R)-2-carboxypiperazin-4-yl][1,2-3H]propyl-1-phosphonate ([3H]CPP, a competitive antagonist at NMDA sites) were inhibited by the peptides at micromolar concentrations. The strychnine-insensitive binding of the NMDA coagonist [3H]glycine was attenuated only by oxidized glutathione and glutathione sulfonate. All peptides slightly enhanced the use-dependent binding of [3H]dizocilpine (MK-801) to the NMDA-gated ionophores. This effect was additive with the effect of glycine but not with that of saturating concentrations of glutamate or glutamate plus glycine. The glutamate- and NMDA-evoked influx of 45Ca2+ into cerebellar granule cells was inhibited by the S-alkyl derivatives of glutathione. We conclude that besides glutathione the endogenous S-methylglutathione and glutathione sulfonate and the synthetic S-alkyl derivatives of glutathione act as ligands of the AMPA and NMDA receptors. In the NMDA receptor-ionophore these glutathione analogues bind preferably to the glutamate recognition site via their γ-glutamyl moieties.

Glutamate receptors glutathione derivatives ligand binding Ca2+ influx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakanishi, S., and Masu, M. 1994. Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23:319-348.Google Scholar
  2. 2.
    Lipton, S. A., and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613-622.Google Scholar
  3. 3.
    Cunningham, M. D., Ferkany, J. W., and Enna, S. J. 1993. Excitatory amino acid receptors: a gallery of new targets for pharmacological intervention. Life Sci. 54:135-148.Google Scholar
  4. 4.
    Collingridge, G. L., and Singer, W. 1990. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci. 11:290-296.Google Scholar
  5. 5.
    Rogers, B. C., and Hugh, A. T. 1989. MK-801 prevents cognitive and behavioural deficits produced by NMDA receptor overstimulation in the rat hippocampus. Toxicol. Appl. Pharmacol. 99:445-453.Google Scholar
  6. 6.
    Seeburg, P. H. 1993. The TINS/TIPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16:359-365.Google Scholar
  7. 7.
    Kiskin, N. I., Kristhal, O. A., Tsyndrenko, A. Y., and Akaike, N. 1986. Are sulfhydryl groups essential for function of the glutamate-operated receptor-ionophore complex? Neurosci. Lett. 66:305-310.Google Scholar
  8. 8.
    Terramani, T., Kessler, M., Lynch, G., and Baudry, M. 1988. Effects of thiol-reagents on [3H]α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding to rat telencephalic membranes. Mol. Pharmacol. 34:117-123.Google Scholar
  9. 9.
    Tang, L.-H., and Aizenman, E. 1993. Long-lasting modification of the N-methyl-D-aspartate receptor channel by a voltage-dependent sulfhydryl redox process. Mol. Pharmacol. 44:473-478.Google Scholar
  10. 10.
    Slivka, A., Spina, M. B., and Cohen, G. 1987. Reduced and oxidized glutathione in human and monkey brain. Neurosci. Lett. 74:112-118.Google Scholar
  11. 11.
    Levy, D. I., Sucher, N. J., and Lipton, S. A. 1991. Glutathione prevents N-methyl-D-aspartate receptor-mediated neurotoxicity. Neuroreport 2:345-347.Google Scholar
  12. 12.
    Janáky, R., Varga, V., Saransaari, P., and Oja, S. S. 1993. Glutathione modulates the N-methyl-D-aspartate receptor-activated calcium influx into cultured rat cerebellar granule cells. Neurosci. Lett. 156:153-157.Google Scholar
  13. 13.
    Levy, D. I., Sucher, N. J., and Lipton, S. A. 1990. Redox modulation of NMDA receptor-mediated toxicity in mammalian central neurons. Neurosci. Lett. 110:291-296.Google Scholar
  14. 14.
    Ogita, K., and Yoneda, Y. 1990. Temperature-independent binding of [3H](±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid in brain synaptic membranes treated by Triton X-100. Brain Res. 515:51-56.Google Scholar
  15. 15.
    Ogita, K., Enomoto, R., Nakahara, F., Ishitsubo, N., and Yoneda, Y. 1995. A possible role of glutathione as an endogenous agonist at the N-methyl-D-aspartate recognition domain in rat brain. J. Neurochem. 64:1088-1096.Google Scholar
  16. 16.
    Oja, S. S., Varga, V., Janáky, R., Kontro, P., Aarnio, T., and Marnela, K.-M. 1988. Glutathione and glutamatergic neurotransmission in the brain. Pages 75-78, in E. A. Cavalheiro, J. Lehmann, and L. Turski (eds), Frontiers in Excitatory Amino Acid Research, Alan R. Liss, New York.Google Scholar
  17. 17.
    Varga, V., Jenei, Zs., Janáky, R., Saransaari, P., and Oja, S. S. 1997. Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxa-zolepropionate (AMPA) receptors. Neurochem. Res. 22:1165-1171.Google Scholar
  18. 18.
    Li, X., Orwar, O., Varga, V., and Sandberg, M. 1993. Determination of acidic sulfur-containing amino acids, β-aspartyl and γ-glutamyl dipeptides in rat brain. J. Neurochem. 61:Suppl., S89A.Google Scholar
  19. 19.
    Kanazawa, A., Kakimoto, Y., Nakajima, T., and Sano, I. 1965. Identification of γ-glutamylserine, γ-glutamylalanine, γ-glutamylvaline and S-methylglutathione of bovine brain. Biochim. Biophys. Acta 111:90-95.Google Scholar
  20. 20.
    Zängerle, L., Cuénod, M., Winterhalter, K. H., and Do, K. Q. 1992. Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices. J. Neurochem. 59:181-189.Google Scholar
  21. 21.
    Orwar, O., Li, X., Andiné, P., Bergström, C.-M., Hagberg, H., Folestad, S., and Sandberg, M. 1994. Increased intra-and extracellular concentrations of γ-glutamylglutamate and related dipeptides in the ischemic rat striatum: involvement of γ-glutamyl transpeptidase. J. Neurochem. 63:1371-1376.Google Scholar
  22. 22.
    Andiné, P., Orwar, O., Jacobson, I., Sandberg, M., and Hagberg, H. 1991. Extracellular acidic sulfur-containing amino acids and γ-glutamyl peptides in global ischemia: postischemic recovery of neuronal activity is paralleled by a tetrodotoxin-sensitive increase in cysteine sulfinate in the CA1 of the rat hippocampus. J. Neurochem. 57:230-236.Google Scholar
  23. 23.
    Nakanishi, S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597-603.Google Scholar
  24. 24.
    Jones, S. M., Snell, L. D., and Johnson, K. M. 1989. Characterization of the binding of radioligands to the N-methyl-D-aspartate, phencyclidine, and glycine receptors in buffy coat membranes. J. Pharmacol. Meth. 21:161-168.Google Scholar
  25. 25.
    Kontro, P., and Oja, S. S. 1987. Taurine and GABA binding in mouse brain: effects of freezing, washing and Triton X-100 treatment on membranes. Int. J. Neurosci. 32:881-889.Google Scholar
  26. 26.
    Varga, V., Janáky, R., Marnela, K.-M., Gulyás, J., Kontro, P., and Oja, S. S. 1989. Displacement of excitatory amino acid receptor ligands by acidic oligopeptides. Neurochem. Res. 14:1223-1227.Google Scholar
  27. 27.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.Google Scholar
  28. 28.
    London, E. D., and Coyle, J. T. 1979. Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol. Pharmacol. 15:492-505.Google Scholar
  29. 29.
    Murphy, D. E., Snowhill, E. W., and Williams, W. 1987. Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and a filtration assay. Neurochem. Res. 12:775-782.Google Scholar
  30. 30.
    Bristow, D. R., Bowery, N. G., and Woodruff, G. N. 1986. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur. J. Pharmacol. 126:303-307.Google Scholar
  31. 31.
    Reynolds, I. J., Murphy, S. N., and Miller, R. J. 1987. 3H-Labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. USA 84:7744-7748.Google Scholar
  32. 32.
    Holopainen, I., and Kontro, P. 1988. Glutamate release from cerebellar granule cells differentiating in culture: modulation of the K+-stimulated release by inhibitory amino acids. Neurochem. Int. 12:155-161.Google Scholar
  33. 33.
    Varga, V., Janáky, R., Holopainen, I., Saransaari, P., and Oja, S. S. 1992. Effect of magnesium on calcium influx activated by glutamate and its agonists in cultured cerebellar granule cells. Neurochem. Res. 17:1195-1200.Google Scholar
  34. 34.
    Varga, V., Janáky, R., Holopainen, I., Kontro, P., and Oja, S. S. 1989. Effect of glutamyltaurine on calcium influx in cultured cerebellar granule cells. Pages 141-145, in H. Pasantes-Morales, D. Martin, W. Shain, and R. Martin del Rio (eds), Taurine: Functional Neurochemistry, Physiology and Cardiology, Wiley-Liss, New York.Google Scholar
  35. 35.
    Varga, V., Janáky, R., and Oja, S. S. 1992. Modulation of glutamate agonist-induced influx of calcium into neurons by γ-L-glutamyl and β-L-aspartyl dipeptides. Neurosci. Lett. 139:270-274.Google Scholar
  36. 36.
    Varga, V., Janáky, R., Marnela, K.-M., Saransaari, P., and Oja, S. S. 1994. Interactions of γ-L-glutamyltaurine with excitatory aminoacidergic neurotransmission. Neurochem. Res. 19:243-248.Google Scholar
  37. 37.
    Varga, V., Janáky, R., Saransaari, P., and Oja, S. S. 1994. Endogenous γ-L-glutamyl and β-L-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain. Neuropeptides 27:19-26.Google Scholar
  38. 38.
    Lanius, R. A., Shaw, C. A., Wagey, R., and Krieger, C. 1994. Characterization, distribution, and protein kinase C-mediated regulation of [35S]glutathione binding sites in mouse and human spinal cord. J. Neurochem. 63:155-160.Google Scholar
  39. 39.
    Holopainen, I., Saransaari, P., and Oja, S. S. 1994. Pharmacological characterization of glutamate binding sites in cultured cerebellar granule cells and cortical astrocytes. Neurochem. Res. 19:111-115.Google Scholar
  40. 40.
    Leslie, S. W., Brown, L. M., Trent, R. D., Lee, Y.-H., Morris, J. L., Jones, T. W., Randall, P. K., Lau, S. S., and Monks, T. J. 1992. Stimulation of N-methyl-D-aspartate receptor-mediated calcium entry into dissociated neurons by reduced and oxidized glutathione. Mol. Pharmacol. 41:308-314.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Zsolt Jenei
    • 1
    • 2
  • Réka Janáky
    • 1
  • Vince Varga
    • 1
    • 2
  • Pirjo Saransaari
    • 1
  • Simo S. Oja
    • 1
    • 3
  1. 1.Tampere Brain Research CenterUniversity of Tampere Medical SchoolTampereFinland
  2. 2.Department of Animal PhysiologyKossuth Lajos University of SciencesDebrecenHungary
  3. 3.Department of Clinical PhysiologyTampere University HospitalTampereFinland

Personalised recommendations