Plant Molecular Biology

, Volume 51, Issue 1, pp 99–108

Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus

  • Ulrike Simon-Rosin
  • Craig Wood
  • Michael K. Udvardi


Two related families of ammonium transporters have been identified and partially characterised in plants in the past; the AMT1 and AMT2 families. Most attention has focused on the larger of the two families, the AMT1 family, which contains members that are likely to fulfil different, possibly overlapping physiological roles in plants, including uptake of ammonium from the soil. The possible physiological functions of AMT2 proteins are less clear. Lack of data on cellular and tissue location of gene expression, and the intracellular location of proteins limit our understanding of the physiological role of all AMT proteins. We have cloned the first AMT2 family member from a legume, LjAMT2;1 of Lotus japonicus, and demonstrated that it functions as an ammonium transporter by complementing a yeast mutant defective in ammonium uptake. However, like AtAMT2 from Arabidopsis, and unlike AMT1 transporters from several plant species, LjAMT2;1 was unable to transport methylammonium. The LjAMT2;1 gene was found to be expressed constitutively throughout Lotus plants. In situ RNA hybridisation revealed LjAMT2;1 expression in all major tissues of nodules. Transient expression of LjAMT2;1-GFP fusion protein in plant cells indicated that the transporter is located on the plasma membrane. In view of the fact that nodules derive ammonium internally, rather than from the soil, the results implicate LjAMT2;1 in the recovery of ammonium lost from nodule cells by efflux. A similar role may be fulfilled in other organs, especially leaves, which liberate ammonium during normal metabolism.

ammonium transport legume root nodule Lotus japonicus mRNA in situ hybridisation nitrogen fixation sub-cellular localisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, C.A. 1991. Ammonium assimilation and export of nitrogen from the legume nodule. In M.J. Dilworth and A.R. Glenn (Eds) Biology and Biochemistry of Nitrogen Fixation, Elsevier, Amsterdam.Google Scholar
  2. Atlas, R. M. 1997. Handbook of Microbiological Media, 2nd ed. CRC Press, London.Google Scholar
  3. Bullock, W.O., Fernandeu, J.M. and Short, J.M. 1987. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli with ?-galactosidase selection. Biotechniques 5: 376–378.Google Scholar
  4. Cserzo, M., Bernassau, J.-M., Simon, I. and Maigret, B. 1994. New alignment strategy for transmembrane proteins. J. Mol. Biol. 243, 388–396.Google Scholar
  5. Cullimore, J.V. and Bennet, M.J. 1991. Nitrogen assimilation in the legume root nodule: current status of the molecular biology of the plant enzymes. Can. J. Microbiol. 38, 461–466.Google Scholar
  6. De Britto, D.T. and Kronzucker, H.J. 2001. Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis. New Phytol. 150, 37–47.Google Scholar
  7. Dolferus, R., Jacobs, M., Peacock, W.J. and Dennis, E.S. 1994. Differential interactions of promoter elements in the stress response of Arabidopsis alcohol dehydrogenase gene. Plant Physiol. 105: 1075–1087.Google Scholar
  8. Forde, B.G. and Clarkson D.T. 1999. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv. Bot. Res. 30: 1–90.Google Scholar
  9. Gazzarrini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer W.B. and von Wiren N. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11: 937–948.Google Scholar
  10. Gietz, R.D., Schiestl, R.H., Willems, A.R. and Woods, R.A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.Google Scholar
  11. Glass, A.D.M., Erner, Y., Kronzucker, H.J., Schjoerring, J.K., Siddiqi, M.Y. and Wang, M.Y. 1997 Ammonium fluxes into plant roots: energetics, kinetics and regulation. Z. Pflanzenernaehr. Bodenk. 160, 261–268.Google Scholar
  12. Handberg, K. and Stougaard, J. 1992. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2: 487–497.Google Scholar
  13. Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. 94: 2122–2127.Google Scholar
  14. Hibbert, J.M., Linley, P.J., Khan, M.S., and Gray, C.J. 1998. Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment Plant J. 16: 627–632.Google Scholar
  15. Hoffmann, K. and Stoffel, W. 1993. TMbase-A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 347, 166.Google Scholar
  16. Hong, B., Ichida, A., Wang, Y., Gens, J.S., Pickard, B.G. and Harper, J.F. 1999. Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum Plant Physiol. 119, 1165–1176.Google Scholar
  17. Howitt, S.M. and Udvardi, M.K. 2000. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta 1465: 152–170.Google Scholar
  18. Huynh, T.V., Young, R.A. and Davis, R.A. 1985. In: D.M. Glover (Ed.) DNA Cloning: A Practical Approach, Vol. 1, IRL Press, Oxford, England, p. 49.Google Scholar
  19. Lam, H.-M., Coschigano, I.C., Oliveira, R., Melo-Oliveira, R. and Coruzzi, G.M. 1996. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 569–593.Google Scholar
  20. Landschuetze, V., Willmitzer, L. and Mueller-Roeber, B. 1995. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers. EMBO J. 14: 660–666.Google Scholar
  21. Lauter, F.R., Ninnemann, O., Bucher, M., Riesmeier, J.W. and Frommer, W.B. 1996. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. USA 93, 8139–8144.Google Scholar
  22. Logemann, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.Google Scholar
  23. Lorenz, M.C. and Heitman, J. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17, 1236–1247.Google Scholar
  24. Marini, A.-M., Springael, J-Y., Frommer, W. B., and Andrè, B. 2000. Cross talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol. Microbiol. 35: 378–385.Google Scholar
  25. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.Google Scholar
  26. Ninnemann, O., Jauniaux, J.C. and Frommer, W.B. 1994. Identifi-cation of a high affinity NH4+ transporter from plants. EMBO J. 13: 3464–3471.Google Scholar
  27. Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M., Kobayashi H. 1999. Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants Plant J. 18: 455–463.Google Scholar
  28. Rawat, S.R., Silim, S.N., Kronzucker, H.J., Siddiqi, M.Y. and Glass, A.D. 1999. AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis. Plant J. 19: 143–152.Google Scholar
  29. Rost, B., Fariselli, P. and Casadio, R. 1996. Topology prediction for helical transmembrane proteins at 86 percent accuracy. Protein Science 5: 1704–1718.Google Scholar
  30. Salvemini, F., Marini, A.M., Riccio, A., Patriarca E. J., Maurizio 2001. Functional characterization of an ammonium transporter gene from Lotus japonicus, Gene 270: 237–243.Google Scholar
  31. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  32. Schjoerring, J.K., Finnemann, J., Husted, S., Mattson, M., Nielson, K.H. and Pearson, N. 1999. Regulation of ammonium distribution in plants. In: G. Gissel-Nielsen and A. Jensen (Eds) Plant Nutrition: Molecular Biology and Genetics, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 69–82.Google Scholar
  33. Schjoerring, J.K., Husted, S., Mäck, G., Hoier, K., Finnemann, J., and Mattson, M. 2000. Physiological regulation of plantatmosphere ammonium exchange. Plant Soil 221, 95–102.Google Scholar
  34. Scott, A., Wyatt, S., Tsou, P-L., Robertson, D. and Allen, N. 1999. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26: 1125–1132.Google Scholar
  35. Shelden, M.C., Dong B., de Bruxelles, G.L., Trevaskis, B., Whelan, J., Ryan, P.R., Howitt, S.M., Udvardi, M.K. 2001. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;1, have different biochemical properties and functional roles. Plant and Soil 231: 151–160.Google Scholar
  36. Smith, F.W., Ealing, P.M., Hawkesford, M.J. and Clarkson, D.T. 1995. Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92: 9373–9377.Google Scholar
  37. Sohlenkamp, C., Shelden, M., Howitt, S. and Udvardi, M., 2000. Characterisation of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 467, 273–278.Google Scholar
  38. Thomas, G.H., Mullins J.G.L. and Merrick M. 2000. Membrane topology of ammonium transporters. Mol. Microbiol. 370: 1–15.Google Scholar
  39. Tusnady, G.E. and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: applications to topology prediction. J. Mol. Biol. 283: 489–506.Google Scholar
  40. Tyerman S., Whitehead, L.F. and Day D.A. 1995. A channel-like transporter for NH4+ on the symbiotic interface of N2-fixing plants. Nature 378, 629–632.Google Scholar
  41. Udvardi, M. and Day, D.A. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol, Plant Mol. Biol. 48: 493–523.Google Scholar
  42. Van De Wiel, C., Scheres, B., Franssen, H., van Lierop M.J. Van Lammeren A., van Kammen, A. Bisseling, T. 1990 The early nodulin transcript ENOD2 is located in the nodule parencymea (inner cortex) of pea and soybean root nodules. EMBO J. 9. 1–8.Google Scholar
  43. von Wiren, N., Gazzarini, S., Gojon, A. and Frommer, W.B. 2000a. The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol. 3: 254–261.Google Scholar
  44. von Wiren, N., Lauter, F.R., Ninnemann, O., Gillissen, B., Walch-Liu P., Engels, C., Jost, W. and Frommer W.B. 2000b. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J. 21: 167–175.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ulrike Simon-Rosin
    • 1
  • Craig Wood
    • 1
  • Michael K. Udvardi
    • 1
  1. 1.Molecular Plant Nutrition Group, Max Planck Institute of Molecular Plant PhysiologyGolmGermany

Personalised recommendations