Metabolic Brain Disease

, Volume 14, Issue 2, pp 117–124

Targeted Disruption of the bcl-2 Gene in Mice Exacerbates Focal Ischemic Brain Injury

  • Ryuji Hata
  • Frank Gillardon
  • Theologos M. Michaelidis
  • Konstantin-Alexander Hossmann
Article

Abstract

Neuronal death after brain ischemia is mainly due to necrosis but there is also evidence for involvement of apoptosis. To test the importance of apoptosis, we investigated the effect of targeted disruption of the apoptosis-suppressive gene bcl-2 on the severity of ischemic brain injury. Transient focal ischemia for 1 hour was induced by occlusion of the middle cerebral artery in homozygous (n=7) and heterozygous (n = 6) bcl-2 knockout mice as well as in their wildtype littermates (n=5). Bcl-2 ablation did not influence cerebral blood flow but it significantly increased infarct size and neurological deficit score at 1 day after reperfusion in a gene-dose dependent manner. The exacerbation of tissue damage in the absence of Bcl-2 underscores the importance of apoptotic pathways for the manifestation of ischemic injury after transient vascular occlusion.

Cerebral ischemia focal ischemia mutant mice bcl-2 apoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Batistatou, A., Merry, D.E., Korsmeyer, S.J., and Greene, L.A. (1993). Bcl-2 affects survival but not neuronal differentiation of PC12 cells. J. Neurosci. 13:4422–4428.Google Scholar
  2. Cellerino, A., Michaelidis, T.M., Barski, J.J., Baehr, M., Thoenen, H., and Meyer, M. (1999). Retinal ganglion cell loss after the period of naturally occuring cell death in bcl-2−/−mice. NeuroReport 10:1091–1095.Google Scholar
  3. Chen, J., Zhu, R.L., Nakayama, M., Kawaguchi, K., Jin, K.L., Stetler, R.A., et al.(1996). Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J. Neurochem. 67:64–71.Google Scholar
  4. Choi, D.W. (1997). Background genes: Out of sight, but not out of brain. Trends Neurosci. 20:499–500.Google Scholar
  5. Clark, R.S.B., Chen, J., Watkins, S.C., Kochanek, P.M., Chen, M.Z., Stetler, R.A., et al.(1997). Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J. Neurosci. 17:9172–9182.Google Scholar
  6. Connolly, E.S., Winfree, C.J., Stern, D.M., Solomon, R.A., and Pinsky, D.J. (1996). Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38:523–531.Google Scholar
  7. Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M., and Chan, P.H. (1998). Cytosolic redistribution of cytochrome C after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 18:1239–1247.Google Scholar
  8. Gillardon, F., Lenz, C., Waschke, K.F., Krajewski, S., Reed, J.C., Zimmermann, M., and Kuschinsky, W. (1996). Altered expression of bcl-2, bcl-X, bax, and c-fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol. Brain Res. 40:254–260.Google Scholar
  9. Gillardon, F., Böttiger, B., Schmitz, B., Zimmermann, M., and Hossmann, K.-A. (1997). Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Mol. Brain Res. 50:16–22.Google Scholar
  10. Hata, R., Mies, G., Wiessner, C., Fritze, K., Hesselbarth, D., Brinker, G., and Hossmann, K.-A. (1998). A reproducible model of middle cerebral artery occlusion in mice: Hemodynamic, biochemical, and magnetic resonance imaging. J. Cereb. Blood Flow Metab. 18:367–375.Google Scholar
  11. Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., and Korsmeyer, S.J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 75:241–251.Google Scholar
  12. Huang, Z., Huang, P.L., Panahian, N., Dalkara, T., Fishman, M.C., and Moskowitz, M.A. (1994). Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885.Google Scholar
  13. Isenmann, S., Stoll, G., Schroeter, M., Krajewski, S., Reed, J.C., and Bahr, M. (1998). Differential regulation of Bax, Bcl-2, and Bcl-X proteins in focal cortical ischemia in the rat. Brain Pathol. 8:49–62.Google Scholar
  14. Kitagawa, K., Matsumoto, M., Tsujimoto, Y., Ohtsuki, T., Kuwabara, K., Matsushita, K., et al.(1998). Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke 29:2616–2621.Google Scholar
  15. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M.J., Fenton, W., and Reed, J.C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53:4701–4714.Google Scholar
  16. Krajewski, S., Mai, J.K., Krajewska, M., Sikorska, M., Mossakowski, M.J., and Reed, J.C. (1995). Upregulation of bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15:6364–6376.Google Scholar
  17. Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R L., and Distelhorst, C.W. (1994). Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl. Acad. Sci. USA. 91:6569–6573.Google Scholar
  18. Lawrence, M.S., Ho, D.Y., Sun, G.H., Steinberg, G.K., and Sapolsky, R.M. (1996). Overexpression of bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J. Neurosci. 16:486–496.Google Scholar
  19. Linnik, M.D., Zahos, P., Geschwind, M D., and Federoff, H.J. (1995). Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke. 26:1670–1674.Google Scholar
  20. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell. 86:147–157.Google Scholar
  21. MacManus, J.P., and Linnik, M.D. (1997). Gene expression induced by cerebral ischemia: An apoptotic perspective [review]. J. Cereb. Blood Flow Metab. 17:815–832.Google Scholar
  22. Maeda, K., Hata, R., and Hossmann, K.-A. (1998). Differences in the cerebrovascular anatomy of C57black/6 and SV129 mice. Neuroreport. 9:1317–1319.Google Scholar
  23. Martinou, J.C., Dubois-Dauphin, M., Staple, J.K., Rodrigues, I., Frankowski, H., Missotten, M. et al.(1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030.Google Scholar
  24. Michaelidis, T.M., Sendtner, M., Cooper, J.D., Airaksinen, M.S., Holtmann, B., Meyer, M., and Thoenen, H. (1996). Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17:75–89.Google Scholar
  25. Miyashita, T., Harigai, M., Hanada, M., and Reed, J.C. (1994). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 54:3131–3135.Google Scholar
  26. Miyashita, T., and Reed, J.C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.Google Scholar
  27. Monaghan, P., Robertson, D., Amos, T.A., Dyer, M.J., Mason, D.Y., and Greaves, M.F. (1992). Ultrastructural localization of bcl-2 protein. J. Histochem. Cytochem. 40:1819–1825.Google Scholar
  28. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., et al.(1998). Activation and cleavage of Caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18:3659–3668.Google Scholar
  29. Okuno, S., Shimizu, S., Ito, T., Nomura, M., Hamada, E., Tsujimoto, Y., and Matsuda, H. (1998). Bcl-2 prevents caspase-independent cell death. J. Biol. Chem. 273:34272–34277.Google Scholar
  30. Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., and Tsujimoto, Y. (1995). Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374:811–813.Google Scholar
  31. Srinivasan, A., Foster, L.M., Testa, M.P., Ord, T., Keane, R.W., Bredesen, D.E., and Kayalar, C. (1996). Bcl-2 expression in neural cells blocks activation of ICE/CED-3 family proteases during apoptosis. J. Neurosci. 16:5654–5660.Google Scholar
  32. Susin, S.A., Zamzami, N., and Kroemer, G. (1998). Mitochondria as regulators of apoptosis — doubt no more. Biochim. Biophys. Acta. 1366:151–165.Google Scholar
  33. Swanson, R.A., Morton, M.T., Tsao-Wu, G., Savalos, R.A., Davidson, C., and Sharp, F.R. (1990). A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 10:290–293.Google Scholar
  34. Tanaka, S., Saito, K., and Reed, J.C. (1993). Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J. Biol. Chem. 268:10920–10926.Google Scholar
  35. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., and Croce, C.M. (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099.Google Scholar
  36. Wang, H.G., and Reed, J.C. (1998). Mechanisms of bcl-2 protein function. Histol. Histopathol. 13:521–530.Google Scholar
  37. Yin, X.M., Oltvai, Z.N., and Korsmeyer, S.J. (1994). BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Ryuji Hata
    • 1
    • 2
  • Frank Gillardon
    • 1
  • Theologos M. Michaelidis
    • 3
  • Konstantin-Alexander Hossmann
    • 1
  1. 1.Department of Experimental NeurologyMax-Planck-Institute for Neurological ResearchCologneGermany
  2. 2.BF Research InstituteOsakaJapan
  3. 3.Division of Molecular Biology of the Cell IIGerman Cancer Research CenterHeidelbergGermany
  4. 4.Max-Planck-Institut für neurologische Forschung, Abteilung für experimentelle NeurologieCologneGermany

Personalised recommendations