Advertisement

General Relativity and Gravitation

, Volume 34, Issue 11, pp 1793–1818 | Cite as

Anisotropic Stars: Exact Solutions

  • Krsna Dev
  • Marcelo Gleiser
Article

Abstract

We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general-relativistic treatment of this problem and obtain exact solutions for various forms of the equation of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M / R can approach unity (2M / R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.

Exact solutions stars anisotropic pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Clayton, D. D. (1983). Principles of Stellar Evolution and Nucleosynthesis (The University of Chicago Press, Chicago).Google Scholar
  2. [2]
    Kippenhahn, R. and Weigert, A. (1991). Stellar Structure and Evolution (Springer-Verlag, Berlin).Google Scholar
  3. [3]
    Glendenning, N. K. (1997). Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer-Verlag, Berlin); Heiselberg, H. and Jensen, M. H. (2000). Phys. Rep. 328, 237.Google Scholar
  4. [4]
    Ruderman, M. (1972). Ann. Rev. Astron. Astrophys. 10, 427.Google Scholar
  5. [5]
    Canuto, V. (1974). Annu. Rev. Astron. Astrophys. 12, 167.Google Scholar
  6. [6]
    For comprehensive reviews see, Liddle A. R. and Marsden, M. S. (1992). Int. J. Mod. Phys. D 1, 101; Jetzer, P. (1992). Phys. Rep. 220, 163; Mielke, E. W. and Schunck, F. E. (1998). In Proceedings of 8th M. Grossmann Meeting, T. Piran (Ed.) (World Scientific, Singapore).Google Scholar
  7. [7]
    Sawyer, R. and Scalapino, D. (1973). Phys. Rev. D 7, 382.Google Scholar
  8. [8]
    Bowers, R. L. and Liang, E. P. T. (1974). Astrophys. J. 188, 657.Google Scholar
  9. [9]
    de Leon, J. P. (1987). J. Math. Phys. 28, 1114.Google Scholar
  10. [10]
    Gokhroo M. and Mehra, A. (1994). Gen. Relativ. Gravit. 26, 75.Google Scholar
  11. [11]
    Bondi, H. (1992). Mon. Not. R. Astron. Soc. 259, 365.Google Scholar
  12. [12]
    Corchero, E. S. (1998). Class. Quantum Grav. 15, 3645.Google Scholar
  13. [13]
    Herrera, L. (1992). Phys. Lett. A 165, 206.Google Scholar
  14. [14]
    Herrera, L. and Santos, N. O. (1997). Phys. Rep. 286, 53.Google Scholar
  15. [15]
    Weinberg, S. (1972). Gravitation and Cosmology (Wiley, New York).Google Scholar
  16. [16]
    Tolman, R. C. (1930). Phys. Rev. 35, 875.Google Scholar
  17. [17]
    Hartle, J. B. and Thorne, K. (1968). Astrophys. J. 153, 803.Google Scholar
  18. [18]
    Misner, C. and Zalopsky, H. (1964). Phys. Rev. Lett. 12, 635.Google Scholar
  19. [19]
    Gleiser, M. (1988). Phys. Rev. D 38, 2376; Gleiser, M. and Watkins, R. (1989). Nucl. Phys. B vn319, 733.Google Scholar
  20. [20]
    Dev, K. and Gleiser, M. (in preparation). Anisotropic Stars: Perturbations.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Krsna Dev
    • 1
  • Marcelo Gleiser
    • 2
  1. 1.Department of Physics and AstronomyDartmouth CollegeHanoverUSA
  2. 2.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations