Journal of Chemical Ecology

, Volume 28, Issue 10, pp 2057–2081

Oligoalginate Recognition and Oxidative Burst Play a Key Role in Natural and Induced Resistance of Sporophytes of Laminariales

  • Frithjof C. Küpper
  • Dieter G. Müller
  • Akira F. Peters
  • Bernard Kloareg
  • Philippe Potin


Forty-five species of brown algae (Phaeophyceae) were surveyed for their capacity to respond by an oxidative burst to challenges with alginate oligosaccharides. Intertidal frondose brown algae (Fucales) constitutively released high quantities of peroxide. The capacity to recognize oligoguluronates and to react with an oxidative burst was confined to alginate-rich taxa with complex thallus morphology, epitomized by the sporophytes of Laminariales. When kelp sporophytes were impaired in their capacity to perform an oxidative burst by the NAD(P)Hoxidase inhibitor diphenylene iodonium, they were readily degraded by their bacterial epiflora. Thus, in these algae, the oxidative response is an essential element of natural resistance. We also report on the establishment of a well-defined experimental system for investigations on kelp immunity, with Laminaria digitata as the host and its phaeophycean endophyte, Laminariocolax tomentosoides, as the pathogen. We found that an alginate-triggered oxidative burst significantly induces resistance in Laminaria digitata against infection. From these findings we infer that oligoalginate signals are important cues in the interaction between laminarialean kelps and potential pathogens.

Marine algae kelps Laminaria Laminariocolax Macrocystis oligoalginates oxidative burst natural resistance induced resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALvarez, M. E., Pennell, R. I., Meijer, P.-J., Ishikawa, A., Dixon, R., and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic network in the establishment of plant immunity. Cell 92:773–784.Google Scholar
  2. Apt, K. E. 1988. Etiology and development of hyperplasia induced by Streblonema sp. (Phaeophyta) on members of the Laminariales (Phaeophyta). J. Phycol. 24:28–34.Google Scholar
  3. Bouarab, K. P., Potin, J., Correa, and Kloareg, B. 1999. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650.Google Scholar
  4. Boyen, C., Bertheau, Y., Barbeyron, T., and Kloareg, B. 1990a. Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme Microb. Technol. 12:885–890.Google Scholar
  5. Boyen, C., Kloareg, B., Polne-Fuller, M., and Gibor, A. 1990b. Preparation of alginate lyases from marine molluscs for protoplast isolation in brown algae. Phycologia 29:173–181.Google Scholar
  6. Burkhardt, E. and Peters, A. F. 1998. Molecular evidence from nrDNA ITS sequences that Laminariocolax (Phaeophyceae, Ectocarpales sensu lato) is a worldwide clade of closely related kelp endophytes. J. Phycol. 34:682–691.Google Scholar
  7. Carpenter, R.C. 1990. Competition among marine macroalgae: a physiological perspective. J. Phycol. 26:6–12.Google Scholar
  8. Coll´en, J. and Davison, I. R. 1999. Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). J. Phycol. 35:54–61. OLIGOALGINATES INDUCE RESISTANCE IN KELPS 2079Google Scholar
  9. Correa, J. A. 1997. Infectious diseases of marine algae: Current knowledge and approaches. PP. 149–180, in F. E. Round and D. J. Champan (eds.). Progress in Phycological Research (Vol. 12). Biopress Ltd., Bristol.Google Scholar
  10. Corre, S., Prieur, D., Chamroux, S., Floc'h, J.-Y., and Hourmant, A. 1989. Caract´erisation des communaut´es bact´eriennes ´epiphytes de frondes de Laminaria digitata et de d´ebris r´esultant de leur fragmentation. Cah. Biol. Mar. 30:115–130.Google Scholar
  11. Cronin, G. and Hay, M. E. 1996. Induction of seaweed chemical defenses by amphipod grazing. Ecology 77:2287–2301.Google Scholar
  12. Draisma, S. G. A., Prud'homme Van Reine, W. F., Stam, W. T., and Olsen, J. A. 2001. A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J. Phycol. 37:586–603.Google Scholar
  13. Ebel, J. and MithÖfer, A. 1998. Early events in the elicitation of plant defence. Planta 206:335–348.Google Scholar
  14. EllertsdÓttir, E. and Peters, A. F. 1997. High prevalence of infection by endophytic brown algae in populations of Laminaria spp. (Phaeophyceae). Mar. Ecol. Prog. Ser. 146:135–143.Google Scholar
  15. Hammerstrom, K., Dethier, M. N., and Duggins, D. O. 1998. Rapid phlorotannin induction and relaxation in five Washington kelps. Mar. Ecol. Prog. Ser. 165:293–305.Google Scholar
  16. Haug, A., Larsen, B., and SmidsrØd, O. 1974. Uronic acid sequence in alginate from different sources. Carbohydr. Res. 32:217–225.Google Scholar
  17. Hay, M. E. 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200:103–134.Google Scholar
  18. Hay, M. E. and Fenical, W. 1988. Marine plant-herbivore interactions: The ecology of chemical defense. Annu. Rev. Ecol. Syst. 19:111–145.Google Scholar
  19. Hay, M. E. and Fenical, W. 1992. Chemical mediation of seaweed-herbivore interactions, pp. 319–337, in D. M. John, S. J. Hawkins, and J. H. Price (eds.). Plant–Animal Interactions in the Marine Benthos, (Systematic Association Special Vol. 46). Clarendon Press, Oxford.Google Scholar
  20. Hay, M. E. and Steinberg, P.D. 1992. The chemical ecology of plant–herbivore interactions in marine versus terrestrial communities, pp. 371–413, in G. A. Rosenthal and Berenbaum, M. R. (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  21. Hay, M. E., Piel, J., Boland, W., and Schnitzler, I. 1998. Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. Chemoecology 8:91–98.Google Scholar
  22. Heesch S. and Peters, A. F. 1999. Scanning electron microscopy of host entry by two brown algae endophytic in Laminaria saccharina (Laminariales, Phaeophyceae). Phycol. Res. 47:1–5.Google Scholar
  23. Kawai, H. and Tokuyama, M. 1995. Laminarionema elsbetiae gen. et sp. nov. (Ectocarpales, Phaeophyceae), a new endophyte in Laminaria sporophytes. Phycol. Res. 43:185–190.Google Scholar
  24. KÜpper, F. C., and MÜller, D. G. 1999. Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389.Google Scholar
  25. KÜpper, F. C. Kloareg, B., Guern, J., and Potin, P. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125:278–291.Google Scholar
  26. Lubchenco, J. and Gaines, S. D. 1981. A unified approach of marine plant-herbivore interactions. I. Populations and communities. Annu. Rev. Syst. Ecol. 12:405–437.Google Scholar
  27. LÜning, K., Wagner, A., and Buchholz, C. 2000. Evidence for inhibitors of sporangium formation in Laminaria digitata (Phaeophyceae) during the season of rapid growth J. Phycol. 36:1129–1134.Google Scholar
  28. Maier, I., Parodi, E., Westermeier, R., and MÜller, D. G. 2000. Maullinia ectocarpii gen. et sp. nov. (Plasmodiophorea), an intracellular parasite in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) and other filamentous brown algae. Protist 151:225–238. 2080 K¨UPPER ET AL.Google Scholar
  29. MÜller, D. G., KÜupper, F. C., and KÜpper, H. 1999. Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol. Res. 47:217–223.Google Scholar
  30. Norton, T. A., Watson, D. C., Hawkins, S. J., Manley, N. L., and Williams, G. A. 1990. Scraping a living: a review of littorinid grazing. Hydrobiol. 193:117–138.Google Scholar
  31. Olff, H. and Ritchie, M. E. 1998. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13:261–265.Google Scholar
  32. Pavia, H. and Toth, G. 2000. Inducible chemical resistance in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225.Google Scholar
  33. Pellegrini, M. and Pellegrini, L. 1982. Some observations on relationships between bacteria and a brown alga. Biol. Cell. 43:195–200.Google Scholar
  34. Peters, A. F. 1991. Field and culture studies of Streblonema macrocystis sp. nov. (Ectocarpales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycologia 30:365–377.Google Scholar
  35. Peters, A. F. and EllertsdÓttir, E. 1996. New record of the kelp endophyte Laminarionema elsbetiae (Phaeophyceae, Ectocarpales) at Helgoland and its life history in culture. Nova Hedwigia 62:341–349.Google Scholar
  36. Peters, A. F., and Schaffelke, B. 1996. Streblonema (Ectocarpales, Phaeophyceae) infection in the kelp Laminaria saccharina (Laminariales, Phaeophyceae) in the western Baltic. Hydrobiologia 326/327:111–117.Google Scholar
  37. Potin, P., Bouarab, K., KÜpper, F. C., and Kloareg, B. 1999. Oligosaccharide recognition signals and defence reactions in marine plant–microbe interactions. Curr. Opin. Microbiol. 2:276–283.Google Scholar
  38. Rousseau, F., Burrowes, R., Peters, A. F., Kuhlenkamp, R., and De Reviers, B. 2001. A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences. Comp. Rend. Acad. Sci. Paris 324:1–15.Google Scholar
  39. Sawabe, T., Tanaka, R., Iqbal, M. M., Tajima, K., Ezura, Y., Ivanova, E. P., and Christen, R. 2000. Assignment of Alteromonas elyakoviiKMM162T and five strains from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int. J. Syst. Evol. Microbiol. 50:265–271.Google Scholar
  40. Schnitzler, I., Boland, W., and Hay, M. E. 1998. Organic sulfur compounds from Dictyopteris spp. deter feeding by an herbivorous amphipod (Ampithoe longimana) but not by an herbivorous sea urchin (Arbacia punctulata). J. Chem. Ecol. 24:1715–1732.Google Scholar
  41. Starr, R. C. and Zeikus, J. A. 1987. UTEX-the culture collection of algae at the University of Texas at Austin. J. Phycol. 23:1–47.Google Scholar
  42. Steinberg, P. D. 1992. Geographical variations in the interaction between marine herbivores and brown algal secondary metabolites, pp. 51–92, in V. J. Paul (ed.). Ecological Roles of Marine Natural Products. Cornell University, New York.Google Scholar
  43. Targett, N. M. and Arnold, T. M. 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34:387–428.Google Scholar
  44. Toth, G. B. and Pavia, H. 2000. Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc. Natl. Acad. Sci. USA 97:14418–14420.Google Scholar
  45. Van Camp, W. V., Van Montagu, M., and InzÉ, D. 1998. H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3:330–334.Google Scholar
  46. Wainwright, M. and Sherbrock-Cox, U. 1981. Factors influencing alginate degradation by the marine fungi: Dendryphiella salina and D. arenaria. Bot. Mar. 24: 489–491.Google Scholar
  47. Weinberger, F. and Friedlander, M. 2000. Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J. Phycol 36:1079–1086.Google Scholar
  48. Weinberger, F., Friedlander, M., and Hoppe, H.-G. 1999. Oligoagars elicit an oxidative burst in Gracilaria conferta (Rhodophyta). J. Phycol. 35:747–755.Google Scholar
  49. Weinberger, F., Richard, C., Kloareg, B., Kashman, Y., Hoppe, H. G., and Friedlander, M. 2001. Structure-activity relationships of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J. Phycol 37:1–9.Google Scholar
  50. Yumoto, I., Ezura, Y., and Kimura, T. 1989. Distribution of Alteromonas sp., the causative agent of red-spots on the culture bed of Makonbu Laminaria japonica, in the coastal area of Funka Bay. Nippon Suisan Gakkaishi 55:453–462.Google Scholar
  51. Zobell, C. E. and Upham, H. C. 1944. A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Ocean. Univ. Calif. (Tech. Ser.) 5:239–292.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Frithjof C. Küpper
    • 1
    • 2
  • Dieter G. Müller
    • 2
  • Akira F. Peters
    • 1
    • 3
  • Bernard Kloareg
    • 1
  • Philippe Potin
    • 1
  1. 1.Station Biologique, UMR 1931CNRS-Laboratoires GoëmarRoscoff, BrittanyFrance
  2. 2.Department of BiologyUniversity of KonstanzKonstanzGermany
  3. 3.Institute for Marine ResearchKielGermany

Personalised recommendations