Neurochemical Research

, Volume 23, Issue 10, pp 1297–1302 | Cite as

Nitric Oxide Synthase Inhibition Prevents Acute Quinolinate-Induced Striatal Neurotoxicity

  • Francisca Pérez-Severiano
  • Bruno Escalante
  • Camilo Ríos


Quinolinic acid (QUIN) is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) receptors, that leads to neurotoxic damage resembling the alterations observed in Huntington's disease. Two major end-points of QUIN induced neurotoxicity are both circling behavior (CB) and lipid peroxidation (LP). Recently, nitric oxide (NO) has been implicated as a mediator of cell injury in some neurological disorders, thus, NO as a free radical might be involved in QUIN-induced neurotoxicity and oxidative stress. In the present study we evaluated the possible role of NO on QUIN-induced neurotoxicity, by measuring nitric oxide synthase activity (NOS), before and after QUIN-induced damage and by evaluating the effect of NOS inhibition on acute QUIN-induced CB and LP. Rats were striatally microinjected with QUIN (240 nmol/1μl). QUIN administration increased NOS activity by 327% as compared to control values and this enhancement was inhibited by i.v. pretreatment with a NOS inhibitor the NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg). QUIN-induced CB was also attenuated by pretreatment of rats with 1, 5, 10 and 15 mg/kg of L-NAME by −37, −55, −62 and −74% vs QUIN respectively. Similarly, L-NAME also reduced by 32% the QUIN-induced LP. These findings suggest that enhanced NOS activity may participate in QUIN-induced neurotoxicity and oxidative stress.

Quinolinic acid nitric oxide lipid peroxidation neurotoxicity striatum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perkins, M. N., and Stone, T. W. 1983. Pharmacology and regional variations of quinolinic acid evoked excitations in the rat central nervous system. J. Pharmacol. Exp. Ther. 226:551-557.PubMedGoogle Scholar
  2. 2.
    Schwarcz, R., Whetsell, W. O., and Mangano, R. M. 1983. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 219:316-318.PubMedGoogle Scholar
  3. 3.
    Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Schwarcz, K. J., and Martin, J. B. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 321:168-171.PubMedGoogle Scholar
  4. 4.
    Reynolds, G. P., Pearson, S. J., Halket, J., and Sandler, M. 1988. Brain quinolinic acid in Huntington's disease. J. Neurochem. 50:1959-1960.PubMedGoogle Scholar
  5. 5.
    Stone, T. W. 1993. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 45(3):309-379.PubMedGoogle Scholar
  6. 6.
    Wolfensberger, M., Amsler, U., Cuenod, M., Foster, A. C., Whetsell, W. O., and Schwarcz, R. 1983. Identification of quinolinic acid in rat and human brain tissue. Neurosci. Lett. 41:247-252.PubMedGoogle Scholar
  7. 7.
    Moroni, F., Lombardi, G., Moneti, G., and Aldino, G. 1984. The excitotoxin quinolinic acid is present in the brain of several mammals and it's cortical contents increases during the aging process. Neurosci. Lett. 47:51-55.PubMedGoogle Scholar
  8. 8.
    Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., and Bird, E. D. 1990. Kynurenine pathway measurements in Huntington's disease striatum: Evidence for reduced formation of kynurenic acid. J. Neurochem. 55:1327-1339.PubMedGoogle Scholar
  9. 9.
    Albin, R. L., Young, A. B., Penney, J. B., Handelin, B., Balfour, R., et al. 1990. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's diseases. N. Engl. J. Med. 322:1293-1298.PubMedGoogle Scholar
  10. 10.
    Heyes, M. P., Saito, K., Crowlwy, J. S., Davis, L. E., Demitrack, M. A., et al. 1992. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory disease. Brain. 115:1249-1273.PubMedGoogle Scholar
  11. 11.
    Ríos, C., and Santamaría, A. 1991. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem. Res. 16(10):1139-1143.PubMedGoogle Scholar
  12. 12.
    Santamaría, A., and Ríos, C. 1993. MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci. Lett. 159:51-54.PubMedGoogle Scholar
  13. 13.
    Susel, Z., Engber, T. M., and Chase, T. N. 1989. Behavioral evaluation of the anti-excitotoxic properties of MK-801: comparison with neurochemical measurements. Neurosci. Lett. 104:125-129.PubMedGoogle Scholar
  14. 14.
    Schmidt, W., Wolf, G., Calka, J., and Schmidt, H. H. H. W. 1995. Evidence for bidirectional changes in nitric oxide synthase activity in the rat striatum after excitotoxically (quinolinic acid) induced degeneration. Neuroscience. 67(2):345-356.PubMedGoogle Scholar
  15. 15.
    Moncada, S., Palmer, R. M. J., and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:109-143.PubMedGoogle Scholar
  16. 16.
    Chapman, P. F., Atkins, C. M., Allen, M. T., et al. 1992. Inhibition of nitric oxide synthesis impairs two different forms of learning. NeuroReport. 3:567-570.PubMedGoogle Scholar
  17. 17.
    O'Dell, T. J., Hawkins, R. D., Kandel, E. R., and Arancio, O. 1991. Test of the roles of two diffusable substances in long term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. U.S.A. 88:1185-1289.Google Scholar
  18. 18.
    Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., et. al. 1994. Nitric oxide regulation of superoxide and peroxinitrite-depend lipid peroxidation. J. Biol. Chem. 269(42):26066-26091.PubMedGoogle Scholar
  19. 19.
    Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., 1993. A redox based mechanism for the neuroprotective ans neurodestructive effects of nitric oxide and related nitroso compounds. Nature. 364:626-632.CrossRefPubMedGoogle Scholar
  20. 20.
    Lipton, S. A., and Stamler, J. S. 1994. Actions of redox congeners of nitric oxide at the NMDA receptor. Neuropharmacol. 33(11):1229-1233.Google Scholar
  21. 21.
    Garthwaite, G., and Garthwite, J. 1988. Cyclic GMP and cell death in rat cerebelar slices. Neuroscience. 26:321-326.PubMedGoogle Scholar
  22. 22.
    Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA. 88:6368-6371.PubMedGoogle Scholar
  23. 23.
    Garthwaite, J. 1991. Glutamate, nitric oxide and cell-cell signaling in the neurons system. Trend Neurosci. 14:60-67.PubMedGoogle Scholar
  24. 24.
    Kiedrowski, L., Costa, E., Wroblewski, J. T. 1992. In vitro interaction between cerebelar astrocytes and granule cells: a putative role for nitric oxide. Neurosci. Lett. 135:59-61.PubMedGoogle Scholar
  25. 25.
    Paxinos, G., and Watson, G. 1984. The rat brain in stereotaxic coordinates, Sydney, Academic Press.Google Scholar
  26. 26.
    Giordano, M., Ford, L. M., Braucman, J. L., Norman, A. B., and Sanberg, P. R. 1990. MK-801 Prevents quinolinic acid-induced behavioral deficits and neurotoxicity in the striatum. Brain Res. Bull. 24:313-319.PubMedGoogle Scholar
  27. 27.
    Moore, P. K., Al-Swayeh, O. A., Chong, N. W. S., Evans, R. A., and Gibson, A. 1990. L-NG-nitro-arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br. J. Pharmacol. 99:408-412.PubMedGoogle Scholar
  28. 28.
    Bredt, D. S., and Snyder, S. H. 1990. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA. 87:682-685.PubMedGoogle Scholar
  29. 29.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantification of protein dye binding. Anal. Biochem. 72:248-254.CrossRefPubMedGoogle Scholar
  30. 30.
    Triggs, W. P., and Willmore, L. J. 1984. In vivo lipid peroxidation in rat brain following intracortical Fe++ injection. J. Neurochem. 42:976-979.PubMedGoogle Scholar
  31. 31.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265-275.PubMedGoogle Scholar
  32. 32.
    Schwarcz, R., Fuxe, K., Agnati, L. F., Hockfelt, T., and Coyle, J. T. 1979. Rotational behavior in rats with unilateral striatal kainic lesions: a behavioral model for studies on intact dopamine receptors. Brain Res. 170:485-495.PubMedGoogle Scholar
  33. 33.
    Fisher, R. S. 1991. Introduction to the excitatory amino acid system. Epilepsy. 10:3-8.Google Scholar
  34. 34.
    Fisher, R. S. 1991. Glutamate and epilepsy. Neurotransmitters Epilepsy. 11:131-45.Google Scholar
  35. 35.
    Turski, L., Bressler, K., Rettig, K. J., Loschmann, P. A., and Wachtel, H. 1991. Protection of substantia nigra from MPTP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature. 349:414-18.PubMedGoogle Scholar
  36. 36.
    Lipton, S. A., Sucher, N. J., Kaiser, P. K., and Dreyer, E. B. 1991. Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron. 7:111-18.PubMedGoogle Scholar
  37. 37.
    Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Synek, B. L. 1990. Alzheimer's disease-changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and apioid receptors an autoradiographic study. Neurosci. 39:613-27.Google Scholar
  38. 38.
    Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1:623-34.PubMedGoogle Scholar
  39. 39.
    Simonian, N. A., and Coyle, J. T. 1996. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36:83-106.PubMedGoogle Scholar
  40. 40.
    Heyes, M. P., Brew, B. J., Martin, A., Price, R. W., and Salazar A. M. 1991. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurologic status. Ann. Neurol. 29:202-209.PubMedGoogle Scholar
  41. 41.
    Heyes, M. P. 1996. The kinurenine pathway and neurologic disease. Therapeutic strategies. Adv. Exp. Med. Biol. 398:125-9.Google Scholar
  42. 42.
    Strijbos, P. J., Leach, M. J., and Garthwaite, J. 1996. Vicious cycle involving Na+ channels, glutamate release and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation. Neurosci. Res. 16(16):5004-13.Google Scholar
  43. 43.
    Park, S. K., Grzybicki D., Lin, H. L., and Murphy, S. 1994. Modulation of inducible nitric oxide synthase expression in astroglial cells. Neuropharmacol. 33(11):1419-1423.Google Scholar
  44. 44.
    Moncada, S., Herman, A. G., and Vanhoutte, P. M. 1987. Endothelium-derived relaxing factor is identified as nitric oxide. Trends Pharmacol. Sci. 8:365-367.Google Scholar
  45. 45.
    Galasso, J. M., Bazzett, T. J., Becker, J. B., and Albin, R. L. 1995. Synergistic effect of intraestriatal coadministration of L-NAME and quinolinic acid. Neuro Report. 6:1505-1608.Google Scholar
  46. 46.
    Globus, M. Y.-T., Prado, R., Sanchez-Ramos, J., Zhao, Weizhao., Dietrich, W. D., Busto, R., and Ginsberg, M. D. 1995. A dual Role for nitric oxide in NMDA-mediated toxicity in vivo. J. Cerebral Blood Flow and Metabolism. 15:904-913.Google Scholar
  47. 47.
    Lancelot, E., Callebert, J., Lerouet, D., Revaud, M. L., Boulou, R. G., Plotkine, M. (1995): Role of the L-arginine-nitric oxide pathway in the basal hydroxyl radical production in the striatum of awake rats as measured by brain microdialisis. Neuroscience Letters. 202:21-24.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Francisca Pérez-Severiano
    • 1
  • Bruno Escalante
    • 2
  • Camilo Ríos
    • 1
  1. 1.Departamento de NeuroquímicaInstituto Nacional de Neurología y Neurocirugía, Manuel Velasco SuárezSSAMéxico
  2. 2.Departamento de Farmacología y ToxicologíaCentro de Investigación y de Estudios Avanzados del IPNMéxico

Personalised recommendations