Glycoconjugate Journal

, Volume 18, Issue 8, pp 589–613 | Cite as

Plant lectins: Occurrence, biochemistry, functions and applications

  • Harold Rüdiger
  • Hans-J. Gabius


Growing insights into the many roles of glycoconjugates in biorecognition as ligands for lectins indicates a need to compare plant and animal lectins. Furthermore, the popularity of plant lectins as laboratory tools for glycan detection and characterization is an incentive to start this review with a brief introduction to landmarks in the history of lectinology. Based on carbohydrate recognition by lectins, initially described for concanavalin A in 1936, the chemical nature of the ABH-blood group system was unraveled, which was a key factor in introducing the term lectin in 1954. How these versatile probes are produced in plants and how they are swiftly and efficiently purified are outlined, and insights into the diversity of plant lectin structures are also given. The current status of understanding their functions calls for dividing them into external activities, such as harmful effects on aggressors, and internal roles, for example in the transport and assembly of appropriate ligands, or in the targeting of enzymatic activities. As stated above, attention is given to intriguing parallels in structural/functional aspects of plant and animal lectins as well as to explaining caveats and concerns regarding their application in crop protection or in tumor therapy by immunomodulation. Integrating the research from these two lectin superfamilies, the concepts are discussed on the role of information-bearing glycan epitopes and functional consequences of lectin binding as translation of the sugar code (functional glycomics).

affinity chromatography agglutinin glycomics lectin plant toxin protein body 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laine RA, The information-storing potential of the sugar code. In Glycosciences: Status and Perspectives, edited by Gabius HJ, Gabius S (Chapman & Hall, London, 1997), pp. 1–14.Google Scholar
  2. 2.
    Imberty A, Oligosaccharide structures: Theory versus experiment, Curr Opin Struct Biol 7, 617–23 (1997).Google Scholar
  3. 3.
    von der Lieth CW, Siebert HC, Kožár T, Burchert M, Frank M, Gilleron M, Kaltner H, Kayser G, Tajkhorshid E, Bovin NV, Vliegenthart JFG, Gabius HJ, Lectin ligands: New insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins, Acta Anat 161, 91–109 (1998).Google Scholar
  4. 4.
    Schachter H, The joys of HexNAc. The synthesis and function of N-and O-glycan branches, Glycoconjugate J 17, 465–83 (2000).Google Scholar
  5. 5.
    Gabius HJ, Biological information transfer beyond the genetic code: The sugar code, Naturwissenschaften 87, 108–21 (2000).Google Scholar
  6. 6.
    Gabius HJ, The howand why of protein-carbohydrate interaction: A primer to the theoretical concept and a guide to application in drug design, Pharmaceut Res 15, 23–30 (1998).Google Scholar
  7. 7.
    Kocourek J, Hořejší V. A note on the recent discussion on the definition of the term “lectin”. In Lectins–Biology, Biochemistry, Clinical Biochemistry, edited by Bøg-Hansen TC, Spengler GA, Vol. 3 (de Gruyter, Berlin, 1983), pp. 3–6.Google Scholar
  8. 8.
    Stillmark H, Ueber Ricin, ein giftiges Ferment aus den Samen von Ricinuscomm.L. und einigen anderen Euphorbiaceen, Schnakenburg's Buchdruckerei, Dorpat, 1888.Google Scholar
  9. 9.
    Mitchell SW, Researches about the venom of the rattlesnake, Smithsonian Contributions to Knowledge XII, 89–90 (1860).Google Scholar
  10. 10.
    Ehrlich P, Experimentelle Untersuchungen ¨uber Immunit¨at. II. Ueber Abrin, Dtsch Med Wschr 17, 1218–9 (1891).Google Scholar
  11. 11.
    Knight B, Ricin—a homicidal poison, Br Med J i, 350–1 (1979).Google Scholar
  12. 12.
    Sumner JB, The globulins of the jack bean, Canavalia ensiformis, J Biol Chem 37, 137–42 (1919).Google Scholar
  13. 13.
    Sumner J, Howell SF, The identification of the hemagglutinin of the Jack bean with concanavalin A, J Bacteriol 32, 227–37 (1936).Google Scholar
  14. 14.
    Gold ER, Balding P, Receptor SpecificProteins. Plant and Animal Lectins (Excerpta Medica Amsterdam, 1975).Google Scholar
  15. 15.
    Boyd WC, The lectins: Their present status, Vox Sang 8, 1–32 (1963).Google Scholar
  16. 16.
    Boyd WC, Shapleigh E, Specific precipitating activity of plant agglutinins (lectins), Science 119, 419 (1954).Google Scholar
  17. 17.
    Landsteiner K, van der Scheer J, On the specificity of serological reactions with simple chemical compounds (inhibition reactions), J Exp Med 54, 295–305 (1931).Google Scholar
  18. 18.
    Morgan WTJ, Watkins WM, The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars, Br J Exp Pathol 34, 94–103 (1953).Google Scholar
  19. 19.
    Morgan WTJ, Watkins WM, Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity, Glycoconjugate J 17, 501–30 (2000).Google Scholar
  20. 20.
    Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N, What should be called a lectin? Nature 285, 66 (1980).Google Scholar
  21. 21.
    Gabius HJ, Animal lectins, Eur J Biochem 243, 543–76 (1997).Google Scholar
  22. 22.
    Boyd WC, The proteins of immune reactions. In The Proteins, edited by Neurath H, Bailey K, Vol. 2, Part 2 (Academic Press, New York, 1954), pp. 756–844.Google Scholar
  23. 23.
    Scheggia C, Prisco AE, Dey PM, Daleo GR, Pont Lezica R, Alteration of lectin pattern in potato tuber by virus X, Plant Sci 58, 9–14 (1988).Google Scholar
  24. 24.
    Singh P, Bhaglal P, Bhullar S, Wheat germ agglutinin (WGA) gene expression and ABA accumulation in the developing embryos of wheat (Triticum aestivum) in response to drought, Plant Growth Regulation 30, 145–50 (2000).Google Scholar
  25. 25.
    Shakirova FM, Bezrukova MV, Khayrullin RM, Yamaleev AM, The increase in lectin level in wheat shoots under the action of salt stress, Izv Ross Akad Nauk, Ser Biol 142–5, cited according to Chem Abstr 119, 24783j (1993).Google Scholar
  26. 26.
    Singh P, Bhaglal P, Bhullar SS, Differential levels of wheat germ agglutinin (WGA) in germinating embryos of different wheat cultivars in response to osmotic stress, Plant Physiol Biochem 34, 547–52 (1996).Google Scholar
  27. 27.
    Shannon LM, Hankins CN, Strosberg AD, Enzymatic phytohemagglutinins: Their relation to ‘classic’ legume phytohemagglutinins. In Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by Bøg-Hansen TC, Vol. 1 (de Gruyter, Berlin, 1981), pp. 81–91.Google Scholar
  28. 28.
    Dey PM, Pridham JB, Vicia faba α-galactosidase with lectin activities: An overview. In: Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by Bøg-Hansen TC, van Driessche E, Vol. 5 (de Gruyter, Berlin, 1986), pp. 161–70.Google Scholar
  29. 29.
    Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy JB, Anod factor binding lectin with apyrase activity from legume roots, Proc Natl Acad Sci USA 96, 5856–61 (1999).Google Scholar
  30. 30.
    Brechtel R, Wätzig H, Rüdiger H, The lectin from the mushroom Pleurotus ostreatus: A phosphatase-activating protein that is closely associated with an ?-galactosidase activity, Plant Sci 160, 1025–33 (2001).Google Scholar
  31. 31.
    Trainotti L, Spinello R, Piovan A, Spolaore S, Casadoro G, ?-Galactosidases with a lectin-like domain are expressed in strawberry, J Exp Bot 52, 1635–45 (2001).Google Scholar
  32. 32.
    Shutov AD, Braun H, Chesnokov YV, Baumlein H, Agene encoding a vicilin-like protein is specifically expressed in fern spores. Evolutionary pathway of seed storage globulins, Eur J Biochem 252, 79–89 (1998).Google Scholar
  33. 33.
    Münz K, Intracellular protein sorting and the formation of protein reserves in storage tissue cells of plant seeds, Biochem Physiol Pflanzen 185, 315–35 (1989).Google Scholar
  34. 34.
    Vitale A, Chrispeels MJ, Sorting of proteins to the vacuoles of plant cells, BioEssays 14, 151–60 (1992).Google Scholar
  35. 35.
    Greenwood JS, Stinissen HM, Peumans WJ, Chrispeels MJ, Sambucus nigra agglutinin is located in protein bodies in the phloem parenchyma of the bark, Planta 167, 275–8 (1986).Google Scholar
  36. 36.
    Peumans WJ, Hause B, van Damme EJ, The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments, FEBS Lett 477, 186–92 (2000).Google Scholar
  37. 37.
    Etzler ME, MacMillan S, Scates S, Gibson DM, James DW, Cole D, Thayer S, Subcellular localization of two Dolichos biflorus lectins, Plant Physiol 76, 871–8 (1984).Google Scholar
  38. 38.
    Freier T, Fleischmann G, Rüdiger H, Affinity chromatography on immobilized hog gastric mucin and ovomucoid. A general method for the isolation of lectins, Biol Chem Hoppe-Seyler 366, 1023–8 (1985).Google Scholar
  39. 39.
    Gabius HJ, Engelhardt R, Hellmann KP, Hellmann T, Ochsenfahrt A, Preparation of neoglycoprotein-enzyme conjugate using a heterobifunctional reagent and its use in solid-phase assays and histochemistry, Anal Biochem 165, 349–55 (1987).Google Scholar
  40. 40.
    Gabius S, Hellmann KP, Hellmann T, Brinck U, Gabius HJ, Neoglycoenzymes: A versatile tool for lectin detection in solidphase assays and glycohistochemistry, Anal Biochem 182, 447–51 (1989).Google Scholar
  41. 41.
    Agrawal BBL, Goldstein IJ, Protein carbohydrate interaction. VI. Isolation of concanavalinAby specific adsorption on cross-linked dextran gels, Biochim Biophys Acta 147, 262–71 (1967).Google Scholar
  42. 42.
    Lis H, Sharon N, Affinity chromatography for the purification of lectins, J Chromatogr 215, 361–72 (1981).Google Scholar
  43. 43.
    Gabius HJ, Influence of type of linkage and spacer on the interaction of ?-galactoside-binding proteins with immobilized affinity ligands, Anal Biochem 189, 91–4 (1990).Google Scholar
  44. 44.
    Schurz H, Rüdiger H, A spectrophotometric determination of protein immobilized to affinity gels, Anal Biochem 123, 174–7 (1982).Google Scholar
  45. 45.
    Rüdiger H, Purification and properties of blood group specific lectins from Vicia cracca, Eur J Biochem 72, 317–22 (1977).Google Scholar
  46. 46.
    Fleischmann G, Mauder I, Illert W, Rüdiger H, A one-step procedure for isolation and resolution of the Phaseolus vulgaris isolectins by affinity chromatography, Biol Chem Hoppe-Seyler 366, 1029–32 (1985).Google Scholar
  47. 47.
    Bowles DJ, Pappin DJ, Traffic and assembly of concanavalin A, Trends Biochem Sci 13, 60–4 (1988).Google Scholar
  48. 48.
    Reuter G, Gabius HJ, Eukaryotic glycosylation: Whim of nature or multipurpose tool? Cell Mol Life Sci 55, 368–422 (1999).Google Scholar
  49. 49.
    Helenius A, Aebi M, Intracellular function of N-glycans, Science 291, 2364–9 (2001).Google Scholar
  50. 50.
    Reuter G, Gabius HJ, Sialic acids. Structure, analysis, metabolism, and recognition, Biol Chem Hoppe-Seyler 377, 325–42 (1996).Google Scholar
  51. 51.
    Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N, Characterization of the carbohydrate binding specificity of the leukoagglutinin from Maackia amurensis, J Biol Chem 266, 83–8 (1991).Google Scholar
  52. 52.
    Imberty A, Gautier C, Lescart J, Pérez S, Wyns L, Loris R, An unusual carbohydrate-binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides, J Biol Chem 275, 17541–8 (2000).Google Scholar
  53. 53.
    Bai XM, Brown JR, Varki A, Esko JD, Enhanced 3-O-sulfation of galactose in Asn-linked glycans and Maackia amurensis lectin binding in a new Chinese hamster ovary cell line, Glycobiology 11, 621–32 (2001).Google Scholar
  54. 54.
    Wright CS, The crystal structure of wheat germ agglutinin at 2.2 resolution, J Mol Biol 111, 439–57 (1977).Google Scholar
  55. 55.
    Liener IE, Nutritional significance of lectins in the diet. In The Lectins. Properties, Functions, and Applications in Biology and Medicine, edited by Liener IE, Sharon N, Goldstein IJ (Academic Press, San Diego, 1986), pp. 527–52.Google Scholar
  56. 56.
    Goldstein IJ, Poretz RD, Isolation, physicochemical properties, and carbohydrate-binding specificity of lectins. In The Lectins. Properties, Functions, and Applications in Biology and Medicine, edited by Liener IE, Sharon N, Goldstein IJ (Academic Press, San Diego, 1986), pp. 33–247.Google Scholar
  57. 57.
    Sturm A, Chrispeels MJ, The high-mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60, Plant Physiol 80, 320–2 (1986).Google Scholar
  58. 58.
    Bollini R, Ceriotti A, Daminati MG, Vitale A, Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developing Phaseolus vulgaris cotyledons and for the maintenance of its biological activity, Physiol Plant 65, 15–22 (1985).Google Scholar
  59. 59.
    Sparvoli R, Faoro F, Daminati MG, Ceriotti A, Bollini R, Misfolding and aggregation of vacuolar glycoproteins in plant cells, Plant J 24, 825–36 (2000).Google Scholar
  60. 60.
    Dorland L, van Halbeek H, Vliegenthart JFG, Lis H, Sharon N, Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by NMR, J Biol Chem 256, 7708–11 (1981).Google Scholar
  61. 61.
    Nagai K, Yamaguchi H, Direct demonstration of the essential role of the intramolecular high-mannose oligosaccharide chains in the folding and assembly of soybean (Glycine max) lectin polypetides, J Biochem 113, 123–5 (1993).Google Scholar
  62. 62.
    Nagai K, Shibata K, Yamaguchi H, Role of intramolecular highmannose chains in the folding and assembly of soybean (Glycine max) lectin polypeptides: Studies by the combined use of ion spectroscopy and gel filtration size analysis, J Biochem 114, 830–4 (1993).Google Scholar
  63. 63.
    Masaoka H, Shibata K, Yamaguchi H, Topological and functional characterization of the N-glycans of soybean (Glycine max) agglutinin, J Biochem 126, 212–7 (1999).Google Scholar
  64. 64.
    Adar R, Streicher H, Rozenblatt S, Sharon N, Synthesis of soybean agglutinin in bacterial and mammalian cells, Eur J Biochem 249, 684–9 (1997).Google Scholar
  65. 65.
    Hemperly JJ, Cunningham BA, Circular permutation of amino acid sequences among legume lectins, Trends Biochem Sci 8, 100–2 (1983).Google Scholar
  66. 66.
    Carrington DM, Auffret A, Hanke DE, Polypeptide ligation occurs during post-translational modification of concanavalin A, Nature 313, 64–7 (1985).Google Scholar
  67. 67.
    Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH, Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase, Science 250, 651–7 (1990).Google Scholar
  68. 68.
    Heinemann U, Hahn M, Circular permutation of protein sequence: Not so rare, Trends Biochem Sci 20, 349–50 (1995).Google Scholar
  69. 69.
    Calvete JJ, Thole HH, Raida M, Urbanke C, Romero A, Grangeiro TB, Ramos MV, da Rocha IMA, Guimarães FNV, Cavada BS, Molecular characterization and crystallization of Diocleinae lectins, Biochim Biophys Acta 1430, 367–75 (1999).Google Scholar
  70. 70.
    Herman EM, Shannon LM, Chrispeels MJ, Concanavalin A is synthesized as a glycoprotein precursor, Planta 165, 23–9 (1985).Google Scholar
  71. 71.
    Faye L, Chrispeels MJ, Transport and processing of the glycosylated precursor of concanavalin A in jack bean, Planta 170, 217–24 (1987).Google Scholar
  72. 72.
    Min W, Jones DH, Stability and expression of recombinant prepro-concanavalin A after cytoplasmic expression in Escherichia coli, FEBS Lett 301, 315–8 (1992).Google Scholar
  73. 73.
    Sheldon PS, Keen JN, Bowles DJ, Posttranslational peptide bond formation during concanavalin A processing in vitro, Biochem J 320, 865–70 (1996).Google Scholar
  74. 74.
    Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M, Vacuolar processing enzymes responsible for conversion of several proprotein precursors into mature forms, J Plant Physiol 145, 632–40 (1995).Google Scholar
  75. 75.
    van Driessche E, Structure and function of Leguminosae lectins, Adv Lectin Res 1, 73–134 (1988).Google Scholar
  76. 76.
    Higgins TJV, Chrispeels MJ, Chandler PM, Spencer D, Intracellular sites of synthesis and processing of lectin in developing pea cotyledons, J Biol Chem 258, 9550–2 (1983).Google Scholar
  77. 77.
    Rougé P, Père D, Bourne Y, Cambillau C, Richardson M, Single-and two-chain legume lectins: A revisited question. In Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by Kocourek J, Freed DLJ, Vol. 7 (Sigma Chemical Company, St. Louis, 1990), pp. 105–12.Google Scholar
  78. 78.
    Pont Lezica RF, Taylor R, Varner JE, Solanum tuberosum agglutinin accumulation during tuber development, J Plant Physiol 137, 453–8 (1991).Google Scholar
  79. 79.
    Allen AK, Bolwell GP, Brown DS, Sidebottom C, Slabas AR, Potato lectin: A three domain glycoprotein with novel hydroxyproline containing sequences and sequence similarities to wheat germ agglutinin, Int J Biochem Cell Biol 28, 1285–91 (1996).Google Scholar
  80. 80.
    Sommer-Knudsen J, Bacic A, Clarke AE, Hydroxyproline-rich plant glycoproteins, Phytochemistry 47, 483–97 (1998).Google Scholar
  81. 81.
    Casalongué C, Pont Lezica R, Potato lectin: A cell-wall glycoprotein, Plant Cell Physiol 26, 1533–9 (1985).Google Scholar
  82. 82.
    Millar DJ, Allen AK, Smith CG, Sidebottom C, Slabas AR, Bolwell GP, Chitin-binding proteins in potato (Solanum tuberosum) tuber. Characterization, immunolocalization and effects of wounding, Biochem J 283, 813–21 (1992).Google Scholar
  83. 83.
    Lord JM, Gould J, Griffiths D, O'Hare M, Prior B, Richardson PT, Roberts LM, Ricin: cytotoxicity, biosynthesis and use in immunoconjugates, Progr Med Chem 24, 1–28 (1987).Google Scholar
  84. 84.
    Lamb FI, Roberts LM, Lord JM, Nucleotide sequence of cloned cDNAcoding for preproricin, Eur J Biochem 148, 265–70 (1985).Google Scholar
  85. 85.
    Roberts LM, Lamb FI, Pappin DJC, Lord JM, The primary sequence of Ricinus communis agglutinin in comparison with ricin, J Biol Chem 260, 15682–6 (1985).Google Scholar
  86. 86.
    Harley SM, Lord JM, In vitro endoproteolytic cleavage of castor bean lectin precursors, Plant Sci 41, 111–6 (1985).Google Scholar
  87. 87.
    Lord JM, Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean, Eur J Biochem 146, 403–9 (1985).Google Scholar
  88. 88.
    Frigerio L, Joliffe NA, Di Cola A, Felipe DH, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM, The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting, Plant Physiol 126, 167–75 (2001).Google Scholar
  89. 89.
    Lord JM, Precursors of ricin and Ricinus communis agglutinin, Eur J Biochem 146, 410–6 (1985).Google Scholar
  90. 90.
    Harley SM, Beevers H, Ricin inhibition of in vivo protein synthesis in castor beans, Plant Sci Lett 36, 1–5 (1984).Google Scholar
  91. 91.
    Mansfield MA, Peumans WJ, Raikhel NV, Wheat-germ agglutinin is synthesized as a glycosylated precursor, Planta 173, 482–9 (1988).Google Scholar
  92. 92.
    Stinissen HM, Peumans WJ, Recent advances in biochemistry, cell biology, physiology, biosynthesis and genetics of Gramineae lectins, Biochem Physiol Pflanzen 180, 85–106 (1985).Google Scholar
  93. 93.
    Stinissen HM, Peumans WJ, Chrispeels MJ, Subcellular site of lectin synthesis in developing rice embryos, EMBO J 3, 1979–85 (1984).Google Scholar
  94. 94.
    Yang R, Tang X, Tissue-specific accumulation of rice endosperm chitin-binding proteins (ES-CBP) in developing seeds and its degradation in germinating seeds, Acta Phytophysiol Sinica 19, 195–203 (1993).Google Scholar
  95. 95.
    Yang RY, Tang XH, Isolation and characterization of a chitinbinding material from rice endosperm, Acta Biochim Biophys Sinica 25, 167–73 (1993).Google Scholar
  96. 96.
    Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA, Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials, J Insect Physiol 42, 1035–45 (1996).Google Scholar
  97. 97.
    Fitches E, Woodhouse SD, Edwards JP, Gatehouse JA, In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis agglutinin; ConA) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action, J Insect Physiol 47, 777–87 (2001).Google Scholar
  98. 98.
    van Damme EJM, Allen AK, Peumans WJ, Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs, FEBS Lett 215, 140–4 (1987).Google Scholar
  99. 99.
    van Damme EJM, Kaku H, Perini F, Goldstein IJ, Peeters B, Yagi T, Decock B, Peumans WJ, Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis) lectin, Eur J Biochem 202, 23–30 (1991).Google Scholar
  100. 100.
    Peumans WJ, Winter HC, Bemer V, van Leuven F, Goldstein IJ, Truffa-Bachi P, van Damme EJM, Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium, Glycoconjugate J 14, 259–65 (1997).Google Scholar
  101. 101.
    van Damme EJ, Barre A, Verhaert P, Rougé P, Peumans WJ, Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium, FEBS Lett 397, 352–6 (1996).Google Scholar
  102. 102.
    van Damme EJM, Barre A, Mazard AM, Verhaert P, Horman A, Debray H, Rougé P, Peumans WJ, Characterization and molecular cloning of the lectin from Helianthus tuberosus, Eur J Biochem 259, 135–42 (1999).Google Scholar
  103. 103.
    Peumans WJ, Zhang WL, Barre A, Astoul CH, Balint-Kurti PJ, Rovira P, Rougé P, May GD, van Leven F, Truffa-Bachi P, van Damme EJM, Fruit-specific lectins from banana and plantain, Planta 211, 546–54 (2000).Google Scholar
  104. 104.
    Hirano K, Teraoka T, Yamanaka H, Harashima A, Kunisaki A, Takahashi H, Hosokawa D, Novel mannose-binding rice lectin composed of some isolectins and its relation to a stress-inducible salT gene, Plant Cell Physiol 41, 258–67 (2000).Google Scholar
  105. 105.
    Zhang WL, Peumans WJ, Barre A, Astoul CH, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AAH, van Damme EJM, Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants, Planta 210, 970–8 (2000).Google Scholar
  106. 106.
    Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ, Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3, J Biol Chem 276, 35917–23 (2001).Google Scholar
  107. 107.
    Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ, Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures, J Cancer Res Clin Oncol 127, 275–84 (2001).Google Scholar
  108. 108.
    Edelman GM, Cunningham BA, Reeke GN, Becker JW, Waxdal MJ, Wang JL, The covalent and three-dimensional structure of concanavalin A, Proc Natl Acad Sci USA 69, 2580–4 (1972).Google Scholar
  109. 109.
    Loris R, Hamelryck T, Bouckaert J, Wyns L, Legume lectin structure, Biochim Biophys Acta 1383, 9–36 (1998).Google Scholar
  110. 110.
    Rüdiger H, Rougé P, Structure and function of plant lectins, Carbohydrates in Europe 23, 18–22 (1998).Google Scholar
  111. 111.
    Peumans WJ, Barre A, Hao Q, Rougé P, van Damme EJM, Higher plants developed structurally different motifs to recognize foreign glycans, Trends Glycosci Glycotechnol 12, 83–101 (2000).Google Scholar
  112. 112.
    Srinivas VR, Reddy GB, Ahmad N, Swaminathan CP, Mitra N, Surolia A, Legume lectin family, the ‘natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization, Biochim Biophys Acta 1527, 102–11 (2001).Google Scholar
  113. 113.
    Lescar J, Loris R, Mitchell E, Gautier C, Cazalet V, Cox V, Wyns L, Pérez S, Breton C, Imberty A, Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B4 and molecular basis for metal binding and monosaccharide specificity, J Biol Chem 277, 6608–14 (2002).Google Scholar
  114. 114.
    Varela PF, Solís D, Diaz-Mauriño T, Kaltner H, Gabius HJ, Romero A, The 2.15 °A crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin, J Mol Biol 294, 537–49 (1999).Google Scholar
  115. 115.
    Loris R, Principles of structures of animal and plant lectins, Biochim Biophys Acta 1572, 198–208 (2002).Google Scholar
  116. 116.
    Boukaert J, Dewallef Y, Poortmans F, Wyns L, Loris R, The structural features of concanavalin A governing non-proline peptide isomerization, J Biol Chem 275, 19778–87 (2000).Google Scholar
  117. 117.
    Chrispeels MJ, Raikhel NV, Lectins, lectin genes, and their role in plant defense, Plant Cell 3, 1–9 (1991).Google Scholar
  118. 118.
    Mourey J, Pédelacq JD, Birck C, Fabre C, Rougé P, Samama JP, Crystal structure of the arcelin-1 dimer from Phaseolus vulgaris at 1.9-°A resolution, J Biol Chem 273, 12914–22 (1998).Google Scholar
  119. 119.
    Beintema JJ, Structural features of plant chitinases and chitinbinding proteins, FEBS Lett 350, 159–63 (1994).Google Scholar
  120. 120.
    Espinosa JF, Asensio JL, Garci JL, Laynez J, Bruix M, Wright CS, Siebert HC, Gabius HJ, Cañada FJ, Jiménez-Barbero J, NMR investigations of protein-carbohydrate interactions. Binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N′,N″-triacetylchitotriose, Eur J Biochem 267, 3965–78 (2000).Google Scholar
  121. 121.
    Asensio JL, Cañada FJ, Siebert HC, Laynez J, Poveda A, Nieto PM, Soedjanaatmadja UM, Beintema JJ, Gabius HJ, Jiménez-Barbero J, Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains, Chem Biol 7, 529–43 (2000).Google Scholar
  122. 122.
    Siebert HC, von der Lieth CW, Kaptein R, Beintema JJ, Dijkstra K, van Nuland N, Soedjanaatmadja UMS, Rice A, Vliegenthart JFG, Wright CS, Gabius HJ, Role of aromatic amino acid side chains in carbohydrate binding of plant lectins. Laser photo CIDNP (chemically induced dynamic nuclear polarization) study of hevein-domain-containing lectins, PROTEINS 28, 268–84 (1997).Google Scholar
  123. 123.
    Suetake T, Tsuda S, Kawabata S-i, Miura K, Iwanaga S, Hikichi K, Nitta K, Kawano K, Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif, J Biol Chem 275, 17929–32 (2000).Google Scholar
  124. 124.
    Hester G, Kaku H, Goldstein IJ, Wright CS, Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family, Nature Struct Biol 2, 472–9 (1995).Google Scholar
  125. 125.
    Sankaranarayanan R, Sekar K, Banerjee R, Sharma V, Surolia A, Vijayan M, A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with ?-prism fold, Nature Struct Biol 3, 596–603 (1996).Google Scholar
  126. 126.
    Bourne Y, Astoul CH, Zamboni V, Peumans WJ, Menu-Bouaouiche L, van Damme EJM, Barre A, Rougé P, Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose, Biochem J 364, 173–80 (2002).Google Scholar
  127. 127.
    Lee X, Thompson A, Zhang ZM, Tonthat H, Biesterfeldt J, Ogata C, Xu LL, Johnston RAZ, Young NM, Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide Gal?1,3GalNAc, J Biol Chem 273, 6312–8 (1998).Google Scholar
  128. 128.
    Bourne Y, Zamboni V, Barre A, Peumans WJ, van Damme EJM, Rougé P, Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins, Structure 7, 1473–82 (1999).Google Scholar
  129. 129.
    Rutenber E, Robertus JD, Structure of ricin B-chain at 2.5 Å resolution, PROTEINS 10, 260–9 (1991).Google Scholar
  130. 130.
    Rüdiger H, On the physiological role of plant lectins, BioScience 34, 95–9 (1984).Google Scholar
  131. 131.
    Liener IE, Plant lectins—properties, nutritional significance, and function, ACS Symp Ser 662, 31–43 (1997).Google Scholar
  132. 132.
    Rédiger H, Structure and function of plant lectins. In Glycosciences: Status and Perspectives, edited by Gabius HJ, Gabius S (Chapman & Hall, London, 1997), pp. 415–38.Google Scholar
  133. 133.
    Rüdiger H, Plant lectins—more than just tools for glycoscientists: Occurrence, structure, and possible functions of plant lectins, Acta Anat 161, 130–52 (1998).Google Scholar
  134. 134.
    Etzler ME, From structure to activity: New insights into the functions of legume lectins, Trends Glycosci Glycotechnol 10, 247–55 (1998).Google Scholar
  135. 135.
    Gabius HJ, Glycohistochemistry: The why and how of detection and localization of endogenous lectins, Anat Histol Embryol 30, 3–31 (2001).Google Scholar
  136. 136.
    Wool IG, Glück A, Endo Y, Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation, Trends Biochem Sci 17, 266–9 (1992).Google Scholar
  137. 137.
    Peumans WJ, Hao Q, van Damme EJM, Ribosome-inactivating proteins from plants: More than RNA N-glycosidases? FASEB J 15, 1493–506 (2001).Google Scholar
  138. 138.
    Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE, Biological effects of plant lectins on the cowpea weevil, Phytochemistry 29, 85–9 (1990).Google Scholar
  139. 139.
    Huesing JE, Shade RE, Chrispeels MJ, Murdock LL, ?-Amylase inhibitor, not phytohemagglutinin, explains resistance of common bean to cowpea weevil, Plant Physiol 96, 993–6 (1991).Google Scholar
  140. 140.
    Habibi J, Backus EA, Czapla TH, Plant lectins affect survival of the potato leafhopper (Homoptera: Cicadellidae), J Econ Entomol 86, 945–51 (1993).Google Scholar
  141. 141.
    Habibi J, Backus EA, Czapla TH, Subcellular effects and localization of binding sites of phytohemagglutinin in the potato leafhopper, Empoasca fabae (Insecta: Homoptera: Cicadellidae), Cell Tissue Res 294, 561–71 (1998).Google Scholar
  142. 142.
    Zhu K, Huesing JB, Shade RE, Bressan RA, Hasegawa PM, Murdock LL, An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae), Plant Physiol 110, 195–202 (1996).Google Scholar
  143. 143.
    Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressan IA, Hasegawa PM, Murdock LL, Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II, Proc Natl Acad Sci USA 95, 15123–8 (1998).Google Scholar
  144. 144.
    Habibi J, Backus EA, Czapla TH, Plant lectins affect survival of the potato leafhopper (Homoptera: Cicadellidae), J Econ Entomol 86, 945–51 (1993).Google Scholar
  145. 145.
    Pusztai A, Ewen SWB, Grant G, Brown DS, Stewart JC, Peumans WJ, van Damme EJM, Bardocz S, Antinutritive effects of wheatgerm agglutinin and other N-acetylglucosamine-specific lectins, Br J Nutrit 70, 313–21 (1993).Google Scholar
  146. 146.
    Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA, Transgenic potato plants with enhanced resistance to the tomato moth Lacanobia oleracea: Growth room trials, Mol Breeding 3, 49–63 (1997).Google Scholar
  147. 147.
    Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharati M, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA, Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper, Plant J 15, 469–77 (1998).Google Scholar
  148. 148.
    Tinjuangjun P, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P, Enhanced insect resistance in Thai rice varieties generated by particle bombardment, Mol Breeding 6, 391–9 (2000).Google Scholar
  149. 149.
    Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P, Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests, Mol Breeding 7, 85–93 (2001).Google Scholar
  150. 150.
    Stoger E, Williams S, Christou P, Down RE, Gatehouse JA, Expression of the insecticidal lectin from the snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: Effect on predation by the grain aphid Sitobion avenae, Mol Breeding 5, 65–73 (1999).Google Scholar
  151. 151.
    Birch ANE, Geoghegan IE, Majerus MEN, McNicol JW, Hackett CA, Gatehouse AMR, Gatehouse JA, Tri-trophic interaction involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance, Mol Breeding 5, 75–83 (1999).Google Scholar
  152. 152.
    Bell HA, Fitches EC, Down RE, Marris GC, Edwards JP, Gatehouse JA, Gatehouse AMR, The effect of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on Eulophus pennicornis (Hymenoptera: Eulophidae), a parasitoid of the tomato month Lacanobia oleracea (Lepidoptera; Noctuidae), J Insect Physiol 45, 983–91 (1999).Google Scholar
  153. 153.
    Bell HA, Fitches EC, Marris GC, Bell J, Edwards JP, Gatehouse JA, Gatehouse AMR, Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis (Hymenoptera; Eulophida), Transgen Res 10, 35–42 (2001).Google Scholar
  154. 154.
    Sharon N, Goldstein IJ, Lectins: More than insecticides, Science 282, 1049 (1998).Google Scholar
  155. 155.
    Lu J, The C, Kishore U, Reid KBM, Collectins and ficolins: Sugar pattern recognition molecules of the mammalian innate immune system, Biochim Biophys Acta 1572, 387–400 (2002).Google Scholar
  156. 156.
    Díaz CL, Melchers LS, Hooykass PJJ, Lugtenberg BJJ, Kijne JW, Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis, Nature 338, 579–81 (1989).Google Scholar
  157. 157.
    van Eijsden RR, Díaz CL, de Pater BS, Kijne JW, Sugar-binding activity of pea (Pisum sativum) lectin is essential for heterologous infection of transgenic white clover hairy roots by Rhizobium leguminosarum biovar viciae, Plant Mol Biol 29, 431–9 (1995).Google Scholar
  158. 158.
    Kijne J, Díaz C, de Pater S, Lugtenberg B, Lectins in the symbiosis between Rhizobia and leguminous plants, Adv Lectin Res 5, 15–50 (1992).Google Scholar
  159. 159.
    Brewin NJ, Kardailsky IV, Legume lectins and nodulation by Rhizobium, Trends Plant Sci 2, 92–8 (1997).Google Scholar
  160. 160.
    Hirsch AM, Role of lectins (and rhizobial exopolysaccharides) in legume nodulation, Curr Opin Plant Biol 2, 320–6 (1999).Google Scholar
  161. 161.
    Díaz CL, Spaink HP, Kijne JW, Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene, Mol Plant-Microbe Interact 13, 268–76 (2000).Google Scholar
  162. 162.
    Spaink HP, Root nodulation and infection factors produced by rhizobial bacteria, Annu Rev Microbiol 54, 257–88 (2000).Google Scholar
  163. 163.
    Minic Z, Leproust-Lecoester L, Laporte J, de Kouchkovsky Y, Brown SC, Proteins isolated from lucerne roots by affinity chromatography with sugar analogous to Nod factor moieties, Biochem J 345, 255–62 (2000).Google Scholar
  164. 164.
    Quinn JM, Etzler ME, Isolation and characterization of a lectin from the roots of Dolichos biflorus, Arch Biochem Biophys 258, 535–44 (1987).Google Scholar
  165. 165.
    Villalobo A, Gabius HJ, Signaling pathways for transduction of the initial message of the glycocode into cellular responses, Acta Anat 161, 110–29 (1998).Google Scholar
  166. 166.
    Hervé C, Serres J, Dabos P, Canut H, Barre A, Rougé P, Lescure B, Characterization of the Arabidopsis lecRK-a genes: Members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins, Plant Mol Biol 39, 671–82 (1999).Google Scholar
  167. 167.
    André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius HJ, Galectins-1 and-3 and their ligands in tumor biology, J Cancer Res Clin Oncol 125, 461–74 (1999).Google Scholar
  168. 168.
    Gansera R, Schurz H, Rüdiger H, Lectin-associated proteins from the seeds of Leguminosae, Hoppe-Seyler's Z Physiol Chem 360, 1579–85 (1979).Google Scholar
  169. 169.
    Einhoff W, Fleischmann G, Freier T, Kummer H, Rüdiger H, Interactions between lectins and other components of leguminous protein bodies, Biol Chem Hoppe-Seyler 367, 15–25 (1986).Google Scholar
  170. 170.
    Freier T, Rüdiger H, In vivo binding partners of the Lens culinaris lectin, Biol Chem Hoppe-Seyler 368, 1215–23 (1987).Google Scholar
  171. 171.
    Kummer H, Rüdiger H, Characterization of a lectin-binding storage protein from pea (Pisum sativum), Biol Chem Hoppe-Seyler 369, 639–46 (1988).Google Scholar
  172. 172.
    Bowles DJ, Marcus S, Characterization of receptors for the endogenous lectins of soybean and jackbean seeds, FEBS Lett 129, 135–8 (1981).Google Scholar
  173. 173.
    Einhoff W, Freier T, Kummer H, Rüdiger H, Microcalorimetric effects of lectin interactions. In Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by Bøg-Hansen TC, van Driessche E, Vol. 5 (de Gruyter, Berlin, 1986), pp. 53–6.Google Scholar
  174. 174.
    Gebauer G, Schimpl A, Rüdiger H, Lectin-binding proteins as potent mitogens for B-lymphocytes from nu/nu mice, Eur J Immunol 12, 491–5 (1982).Google Scholar
  175. 175.
    Freier T, Rüdiger H, Lectin-binding proteins from lentil seeds as mitogens for murine B-lymphocytes, Phytochemistry 29, 1459–61 (1990).Google Scholar
  176. 176.
    Rüdiger H, Bartz I, The phosphatase from Canavalia ensiformis seeds interacts with concanavalin A, the lectin from the same plant. In Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by van Driessche E, Franz H, Beeckmans S, Pfüller U, Kallikorm A, Bøg-Hansen TC, Vol. 8 (TexTop, Hellerup, 1993), pp. 92–6.Google Scholar
  177. 177.
    Einhoff W, Rüdiger H, Isolation of the Canavalia ensiformis seed ?-mannosidase by chromatography on concanavalin A, the lectin from the same plant, without involving its sugar binding site, Biol Chem Hoppe-Seyler 367, 313–20 (1986).Google Scholar
  178. 178.
    Einhoff W, Rüdiger H, Interaction of the ?-mannosidase from Canavalia ensiformis with the lectin from the same plant, concanavalin A, Biol Chem Hoppe-Seyler 367, 943–9 (1986).Google Scholar
  179. 179.
    Gers-Barlag H, Schecher G, Nadimpalli SK, Rüdiger H, Protein body membranes as binding partners of lectins. In Lectins— Biology, Biochemistry, Clinical Biochemistry, edited by van Driessche E, Franz H, Beeckmans S, Pfüller U, Kallikorm A, Bøg-Hansen TC, Vol. 8 (TexTop, Hellerup, 1993), pp. 97–100.Google Scholar
  180. 180.
    Schecher G, Rüdiger H, Interaction of the soybean (Glycine max) seed lectin with components of the soybean protein body membrane, Biol Chem Hoppe-Seyler 375, 829–32 (1994).Google Scholar
  181. 181.
    Wenzel M, Gers-Barlag H, Rüdiger H, Cross-reaction with pea lectin of a protein from protein body membranes, Phytochemistry 38, 825–9 (1995).Google Scholar
  182. 182.
    Booij P, Demel RA, de Pater BS, Kijne JW, Insertion of pea lectin into a phospholipid monolayer, Plant Mol Biol 31, 169–73 (1996).Google Scholar
  183. 183.
    Wenzel M, Gers-Barlag H, Schimpl A, Rüdiger H, Time course of lectin and storage protein biosynthesis in developing pea (Pisum sativum) seeds, Biol Chem Hoppe-Seyler 374, 887–94 (1993).Google Scholar
  184. 184.
    Konozy EH, Sawney S, Bhide SB, An approach toward understanding the physiological role of lectins: Detection and identifi-cation of endogenous receptors for Erythrina indica seed lectin, Eur J Cell Biol 74, Suppl. 46, 4 (1997).Google Scholar
  185. 185.
    Yang R, Tang X, Tissue-specific accumulation of rice endosperm chitin-binding proteins (ES-CBP) in developing seeds and its degradation in germinating seeds, Acta Phytophysiol Sinica 19, 195–203 (1993).Google Scholar
  186. 186.
    Spilaltro SR, Cochran GR, Walker RE, Cablish KL, Bittner CC, Characterization of a new lectin of soybean vegetative tissue, Plant Physiol 110, 825–34 (1996).Google Scholar
  187. 187.
    Taipalensuu J, Eriksson S, Rask L, The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart, Eur J Biochem 250, 680–8 (1997).Google Scholar
  188. 188.
    Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M, Linking microfilaments to intracellular membrances: The actin-binding and vesicle-associated protein comitin exhibits a mannosespecific lectin activity, EMBO J 15, 1238–46 (1996).Google Scholar
  189. 189.
    Lorenc-Kubis I, Morawiecka B, Wieczorek E, Wisniowska J, Wierzba E, Ferens M, Bøg-Hansen TC, Effects of lectins on enzymatic properties of plant acid phosphatases and ribonucleases. In Lectins—Biology, Biochemistry, Clinical Biochemistry, edited by Bøg-Hansen TC, Vol. 1 (de Gruyter, Berlin, 1981), pp. 168–78.Google Scholar
  190. 190.
    Wierzba-Arabska E, Morawiecka B, Purification and properties of lectin from potato tubers and leaves; interaction with acid phosphatase from potato tubers, Acta Biochim Polon 34, 407–20 (1987).Google Scholar
  191. 191.
    Conrad F, Rüdiger H, The lectin from Pleurotus ostreatus: Purification, characterization and interaction with a phosphatase, Phytochemistry 36, 277–83 (1994).Google Scholar
  192. 192.
    Helmy M, Lombard S, Pieroni G, Ricin RGA (60): Evidence for its phospholipase activity, Biochem Biophys Res Commun 258, 252–5 (1999).Google Scholar
  193. 193.
    Kaltner H, Stierstorfer B, Animal lectins as cell adhesion molecules, Acta Anat 161, 162–79 (1998).Google Scholar
  194. 194.
    Karpunina LV, Soboleva EF, Pronina OA, Effect of agglutinins from Rhizobium leguminosarum strain 252 on the activity of hydrolytic enzymes, Curr Microbiol 41, 73–5 (2000).Google Scholar
  195. 195.
    Shimoi H, Iimura Y, Obata T, Tadenuma M, Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having mannose-binding activity, J Biol Chem 267, 25189–95 (1992).Google Scholar
  196. 196.
    Mel'nikova UY, Karpunina LV, Ostakhina NV, Ignatov VV, Enzyme activity of lectins from the nitrogen-fixing soil bacterium Bacillus polymyxa, Curr Microbiol 41, 246–9 (2000).Google Scholar
  197. 197.
    Mel'nikova UY, Karpunina LV, Ostakhina NV, Ignatov VV, Proteolytic activity of lectins from the nitrogen-fixing bacterium Bacillus polymyxa, Microbiology 70, 217–20 (2001).Google Scholar
  198. 198.
    Tomme P, Warren RAJ, Gilkes NR, Cellulose hydrolysis by bacteria and fungi, Adv Microbiol Physiol 37, 1–81 (1995).Google Scholar
  199. 199.
    Brill LM, Evans CJ, Hirsch AM, Expression of MsLEC1- and MsLEC2-antisense genes in alfalfa plants causes severe developmental and reproductive abnormalities, Plant J 25, 453–61 (2000).Google Scholar
  200. 200.
    Nowell PC, Phytohemagglutinin: An initiator of mitogenesis in cultures of normal human leukocytes, Cancer Res 20, 462–6 (1960).Google Scholar
  201. 201.
    Rüdiger H, Siebert HC, Solís D, Jiménez-Barbero J, Romero A, von der Lieth CW, Diaz-Mauriño T, Gabius HJ, Medicinal chemistry based on the sugar code: Fundamentals of lectinology and experimental strategies with lectins as targets, Curr Med Chem 7, 389–416 (2000).Google Scholar
  202. 202.
    Gabius HJ, Gabius S (eds), Lectins and Glycobiology (Springer Verlag, Berlin, 1993), p. 521.Google Scholar
  203. 203.
    Rhodes JM, Milton JD (eds), Lectin Methods and Protocols (Humana Press, Totowa, 1998), p. 616.Google Scholar
  204. 204.
    Winterburn PJ, Phelps CF, The significance of glycosylated proteins, Nature 236, 147–51 (1972).Google Scholar
  205. 205.
    Turner GA, N-Glycosylation of serum proteins in disease and its investigation using lectins, Clin Chim Acta 208, 149–71 (1992).Google Scholar
  206. 206.
    Brockhausen I, Schutzbach J, Kuhns W, Glycoproteins and their relationship to human disease, Acta Anat 161, 36–78 (1998).Google Scholar
  207. 207.
    Schachter H (ed), Molecular basis of glycoconjugate disease, Biochim Biophys Acta 1455, 61–418 (1999).Google Scholar
  208. 208.
    Mann PL, Membrane oligosaccharides: Structure and function during differentiation, Int Rev Cytol 112, 67–96 (1988).Google Scholar
  209. 209.
    Kobata A, Endo T, Immobilized lectin columns: Useful tools for the fractionation and structural analysis of oligosaccharides, J Chromatogr 597, 111–22 (1992).Google Scholar
  210. 210.
    Yamamoto K, Tsuji T, Osawa T, Analysis of asparagine-linked oligosaccharides by sequential lectin affinity chromatography. In Glycoprotein Analysis in Biomedicine, edited by Hounsell EF (Humana Press, Totowa, 1993), pp. 17–34.Google Scholar
  211. 211.
    Egea G, Lectin cytochemistry using colloidal gold methodology. In Lectins and Glycobiology, edited by Gabius HJ, Gabius S (Springer Verlag, Berlin, 1993), pp. 215–33.Google Scholar
  212. 212.
    Pavelka M, Topology of glycosylation: A histochemist's view. In Glycosciences: Status and Perspectives, edited by Gabius HJ, Gabius S (Chapman & Hall, London-Weinheim, 1997), pp. 115–20.Google Scholar
  213. 213.
    Stoddart RW, Herbertson BM, The use of lectins in the detection and identification of human fungal pathogens, Biochem Soc Transact 5, 233–5 (1978).Google Scholar
  214. 214.
    Caselitz J, Lectins and blood group substances as tumor markers, Curr Top Pathol 77, 245–87 (1987).Google Scholar
  215. 215.
    Walker RA, The use of lectins in histopathology, Path Res Pract 185, 826–35 (1987).Google Scholar
  216. 216.
    Slifkin M, Doyle RJ, Lectins and their application to clinical microbiology, Clin Microbiol Rev 3, 197–218 (1990).Google Scholar
  217. 217.
    Gabius HJ, Concepts of tumor lectinology, Cancer Invest 15, 454–64 (1997).Google Scholar
  218. 218.
    Walker RA, Helix pomatia and prognosis in breast cancer, Br J Cancer 68, 453–4 (1993).Google Scholar
  219. 219.
    Fukuda M, Hiraoka N, Yeh JC, C-Type lectins and sialyl Lewisx oligosaccharides: Versatile roles in cell-cell interactions, J Cell Biol 147, 467–70 (1999).Google Scholar
  220. 220.
    Gabius HJ, Kohnke-Godt B, Leichsenring M, Bardosi A, Heparin-binding lectin of human placenta as a tool for histochemical ligand localization and ligand isolation, J Histochem Cytochem 39, 1249–56 (1991).Google Scholar
  221. 221.
    Gabius HJ, Wosgien B, Brinck U, Schauer A, Localization of endogenous ?-galactoside-specific lectins by neoglycoproteins, lectin-binding tissue glycoproteins and antibodies and of accessible lectin-specific ligands by a mammalian lectin in human breast cancer, Path Res Pract 187, 839–47 (1991).Google Scholar
  222. 222.
    Gabius HJ, Gabius S, Chemical and biochemical strategies for the preparation of glycohistochemical probes and their application in lectinology, Adv Lectin Res 5, 123–57 (1992).Google Scholar
  223. 223.
    Danguy A, Decaestecker C, Genten F, Salmon I, Kiss R, Applications of lectins and neoglycoconjugates in histology and pathology, Acta Anat 161, 206–18 (1998).Google Scholar
  224. 224.
    Yamazaki N, Kojima S, Bovin NV, André S, Gabius S, Gabius HJ, Endogenous lectins as targets in drug delivery, Adv Drug Deliv Rev 43, 225–44 (2000).Google Scholar
  225. 225.
    Stanley P, Glycosylation mutants and the functions of mammalian carbohydrates, Trends Genet 3, 77–81 (1987).Google Scholar
  226. 226.
    Timoshenko AV, Gorudko IV, Kaltner H, Gabius HJ, Dissection of the impact of various intracellular signaling pathways on stable cell aggregate formation of rat thymocytes after initial lectin-dependent cell association using a plant lectin as model and target-selective inhibitors, Mol Cell Biochem 197, 137–45 (1999).Google Scholar
  227. 227.
    André S, Pieters RJ, Vrasidas I, Kaltner H, Kuwabara I, Liu FT, Liskamp RMJ, Gabius HJ, Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters and cell surface glycoconjugates, Chem-BioChem 2, 822–30 (2001).Google Scholar
  228. 228.
    Kilpatrick DC, Mechanisms and assessment of mitogenesis. In Lectin Methods and Protocols, edited by Rhodes JM, Milton JD (Humana Press, Totowa, 1998), pp. 365–78.Google Scholar
  229. 229.
    Sacchettini JC, Baum LG, Brewer CF, Multivalent proteincarbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction, Biochemistry 40, 3009–15 (2001).Google Scholar
  230. 230.
    Gabius HJ, Probing the cons and pros of lectin-induced immunomodulation: Case studies for the mistletoe lectin and galectin-1, Biochimie 83, 659–66 (2001).Google Scholar
  231. 231.
    Sogn JA, Tumor immunology: The glass is half full, Immunity 9, 757–63 (1998).Google Scholar
  232. 232.
    Kunze E, Schulz H, Gabius HJ, Inability of galactoside-specific mistletoe lectin to inhibit N-methyl-N-nitrosourea-induced tumor development in the urinary bladder of rats and to mediate a local cellular immune response after long-term administration, J Cancer Res Clin Oncol 124, 73–87 (1998).Google Scholar
  233. 233.
    Kunze E, Schulz H, Adamek M, Gabius HJ, Long-term administration of galactoside-specific mistletoe lectin in an animal model: No protection against N-butyl-N-(4-hydroxybutyl)-nitrosamineinduced urinary bladder carcinogenesis in rats and no induction of a relevant local cellular immune response, J Cancer Res Clin Oncol 126, 125–38 (2000).Google Scholar
  234. 234.
    Gabius HJ, Darro F, Remmelink M, André S, Kopitz J, Danguy A, Gabius S, Salmon I, Kiss R, Evidence for stimulation of tumor proliferation in cell lines and histotypic cultures by clinically relevant low doses of the galactoside-binding mistletoe lectin, a component of proprietary extracts, Cancer Invest 19, 114–28 (2001).Google Scholar
  235. 235.
    Timoshenko AV, Lan Y, Gabius HJ, Lala PK, Immunotherapy of C3H/HeJ mammary adenocarcinoma with interleukin-2, mistletoe lectin and their combination: Effects on tumor growth, capillary leakage and NO production, Eur J Cancer 37, 1910–20 (2001).Google Scholar
  236. 236.
    Eggermont AMM, Kleeberg UR, Ruiter DJ, Suciu S, EORTC Melanoma Group trial experience with more than 2,000 patients evaluating adjuvant treatment with low or intermediate doses of interferon α-2b. In ASCO Educational Book, edited by Perry MC (ASCO, Alexandria, VA, 2001), pp. 88–93.Google Scholar
  237. 237.
    Institut for Arzneimittelinformation (eds), Mistelextrakt (Iscador u.a.): Zurück in die präklinische Prüfung? Arznei-telegramm 32, 58 (2001).Google Scholar
  238. 238.
    Shane AC, Hart GW, Dynamic cytoskeletal glycosylation and neurodegenerative disease, Trends Glycosci Glycotechnol 11, 355–70 (1999).Google Scholar
  239. 239.
    Goldstein IJ, Winter HC, Poretz RD, Plant lectins: Tools for the study of complex carbohydrates. In Glycoproteins II, edited by Montreuil J, Vliegenthart JFG, Schachter H (Elsevier, Amsterdam, 1997), pp. 403–74.Google Scholar
  240. 240.
    Peumans WJ, van Damme EJM, Plant lectins: Specific tools for the identification, isolation and characterization of O-linked glycans, Crit Rev Biochem Mol Biol 33, 209–58 (1998).Google Scholar
  241. 241.
    Wu AM, Song S, Tsai M, Herp A, A guide to the carbohydrate specificities of applied lectins (updated in 2000), Adv Exp Med Biol 491, 551–85 (2001).Google Scholar
  242. 242.
    Lotan R, Nicolson GL, Purification of cell membrane glycoproteins by lectin affinity chromatography, Biochim Biophys Acta 559, 329–76 (1979).Google Scholar
  243. 243.
    Siebert HC, André S, Asensio JL, Cańada FJ, Dong X, Espinosa JF, Frank M, Gilleron M, Kaltner H, Kožár T, Bovin NV, von der Lieth CW, Vliegenthart JFG, Jiménez-Barbero J, Gabius HJ, A new combined computational and NMR-spectroscopical strategy for the identification of additional conformational constraints of the bound ligand in an aprotic solvent, ChemBioChem 1, 181–95 (2000).Google Scholar
  244. 244.
    Hirabayashi J, Kasai K, Glycomics, coming of age, Trends Glycosci Glycotechnol 12, 1–5 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Harold Rüdiger
    • 1
  • Hans-J. Gabius
    • 2
  1. 1.Institut für Pharmazie und LebensmittelchemieJulius-Maximilians-UniversitätWürzburgGermany
  2. 2.Institut für Physiologische Chemie, Tierärztliche FakultätLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations