Advertisement

Journal of Atmospheric Chemistry

, Volume 43, Issue 3, pp 195–229 | Cite as

The Production of Methanol by Flowering Plants and the Global Cycle of Methanol

  • I. E. Galbally
  • W. Kirstine
Article

Abstract

Methanol has been recognised as an important constituent of the background atmosphere, but little is known about its overall cycle in the biosphere/atmosphere system. A model is proposed for the production and emission to the atmosphere of methanol by flowering plants based on plant structure and metabolic properties, particularly the demethylation of pectin in the primary cell walls. This model provides a framework to extend seven sets of measurements of methanol emission rates to the global terrestrial biosphere. A global rate of release of methanol from plants to the atmosphere of 100 Tg y−1 is calculated. A separate model of the global cycle of methanol is constructed involving emissions from plant growth and decay, atmospheric and oceanic chemical production, biomass burning and industrial production. Removal processes occur through hydroxyl radical attack in the atmosphere, in clouds and oceans, and wet and dry deposition. The model successfully reproduces the methanol concentrations in the continental boundary-layer and the free atmosphere, including the inter-hemispheric gradient in the free atmosphere. The model demonstrates a new concept in global biogeochemistry, the coupling of plant cell growth with the global atmospheric concentration of methanol. The model indicates that the ocean provides a storage reservoir capable of holding at least 66 times more methanol than the atmosphere. The ocean surface layer reservoir essentially buffers the atmospheric concentration of methanol, providing a physically based smoothing mechanism with a time constant of the order of one year.

biogeochemical cycle global budget methanol pectin plant growth ocean surface layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ander, P. and Eriksson, K.-E., 1985: Methanol formation during lignin degradation by Phanerochaete chrysosporium, Appl. Microbiol. Biotechnol. 21, 96–102.Google Scholar
  2. Andreae, M. O. and Merlet, P., 2001: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles 15, 955–966.Google Scholar
  3. Asmus, K.-D., Mockel., H., and Henglein, A., 1973: Pulse radiolytic study of the site of OH· radical attack on aliphatic alcohols in aqueous solution, J. Phys. Chem. 77, 1218–1221.Google Scholar
  4. Atkinson, R., 1985: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev. 85, 69–201.Google Scholar
  5. Bacher, C., Tyndall, G. S., and Orlando, J. J., 2001: The atmospheric chemistry of glycolaldehyde, J. Atmos. Chem. 39, 171–189.Google Scholar
  6. Bacic, A., Harris, P. J., and Stone, B. A., 1988: Structure and function of plant cell walls, in J. Priess (ed.), The Biochemistry of Plants: A Comprehensive Treatise, Volume 14 (Carbohydrates), Academic Press, San Diego, pp. 297–371.Google Scholar
  7. Baker, B., Guenther, A., Greenberg, J., and Fall, R., 2001: Canopy level fluxes of 2-methyl-3-buten-2-ol, acetone, and methanol by a portable relaxed eddy accumulation system, Environ. Sci. Technol. 36, 1701–1708.Google Scholar
  8. Beadle, C. L., Long, S. P., Imbamba, S. K., Hall, D. O., and Olembo, R. J., 1985: Photosynthesis in Relation to Plant Production in Terrestrial Environments, Tycooly Publishing, Oxford, p. 47.Google Scholar
  9. Bourbonnais, R. and Paice, M. G., 1992: Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate, Appl. Microbiol. Biotechnol. 36, 823–827.Google Scholar
  10. Box, E. O., 1981: Foliar biomass: data BASF of the international biological program and other sources, in J. J. Bufalini and R. R. Arnts (eds), Atmospheric Biogenic Hydrocarbons, Volume 1, Ann Arbor Science, pp. 121–148.Google Scholar
  11. Brandenberger, U., Brauers, T., Dorn, H.-P., Hausmann, M., and Ehhalt, D. H., 1998: In-situ measurements of tropospheric hydroxyl radicals by folded long-path laser absorption during the field campaign POPCORN, J. Atmos. Chem. 31, 181–204.Google Scholar
  12. Cao, M. and Woodward, F. I., 1998: Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change, Global Change Biol. 4, 185–198.Google Scholar
  13. Carpita, N. C. and Gibeaut, D. M., 1993: Structural models of primary cell walls in flowering plants: consistency of molecular structure with physical properties of the walls during growth, Plant J. 3, 1–30.Google Scholar
  14. Carpita, N. C., 1996: Structure and biogenesis of the cell walls of grasses, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.Google Scholar
  15. Castaldo, D., Loiudice, R., Laratta, B., Giovane, A., Quagliuolo, L., and Servillo, L., 1997: Presence of residual pectin methylesterase activity in thermally stabilized industrial fruit preparations, Lebensm.-Wiss. u.-Technol. 30, 479–484.Google Scholar
  16. Corpe, W. A. and Rheem, S., 1989: Ecology of the methylotrophic bacteria on living leaf surfaces, FEMS Microbiol. Ecol. 62, 243–250.Google Scholar
  17. Cosgrove, D. J., 1997: Assembly and enlargement of the primary cell wall in plants, Annu. Rev. Cell Dev. Biol. 13, 171–201.Google Scholar
  18. Creasey, D. J., Heard, D. E., and Lee, J. D., 2001: OH and HO2 measurements in a forested region of north-western Greece, Atmos. Environ. 35, 4713–4724.Google Scholar
  19. Crocco, J. R., 1994: Global outlook: supply, demand, and marketing, in W.-H. Cheng and K. Kung (eds), Methanol Production and Use, Marcel Dekker, New York, pp. 283–317.Google Scholar
  20. Crocco, J. R., 1997: World methanol demand forecast to grow 2.7% over five years, Hydrocarbon Process. 76, 25.Google Scholar
  21. Crutzen, P. J. and Andreae, M. O., 1990: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles, Science 250, 1669–1678.Google Scholar
  22. Crutzen, P. J. and Lawrence, M. G., 2000: The impact of precipitation scavenging on the transport of trace gases: a 3-dimensional model sensitivity study, J. Atmos. Chem. 37, 81–112.Google Scholar
  23. Crutzen, P. J., Williams, J., Pöschl, U., Hoor, P., Fischer, H., Warneke, C., Holzinger, R., Hansel, A., Lindinger, W., Scheeren, B., and Lelieveld, J., 2000: High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam, Atmos. Environ. 4, 1161–1165.Google Scholar
  24. Cyr, H. and Pace, M. L., 1993: Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems, Nature 361, 148–150.Google Scholar
  25. Das, M., 1996: Trends, photochemistry, and analysis of volatile organic compounds in the lower troposphere of the southeastern United States, PhD Thesis, Raleigh, North Carolina.Google Scholar
  26. Demarty, M., Morvan, C., and Thellier, M., 1984: Calcium and the cell wall, Plant Cell Environ. 7, 441–448.Google Scholar
  27. Donnell, E., Fish, D., and Thorpe, A., 2001: Quantifying the export of pollutants from the boundary layer, in S.-E. Gryning and F. A. Schiermeier (eds), Air Pollution Modeling and Its Application IV, Kluwer Academic/Plenum Publishers, New York, pp. 183–192.Google Scholar
  28. Doong, R., Liljebjelke, L. K., Fralish, G., Kumar, A., and Mohnen, D., 1995: Cell-free synthesis of pectin, Plant Physiol. 109, 141–152.Google Scholar
  29. Ehrlich, H. L., 1996: Geomicrobiology, 3rd edn, Marcel-Dekker, New York.Google Scholar
  30. Elliott, S., and Rowland, F. S., 1995: Methyl halide hydrolysis rates in natural waters, J. Atmos. Chem. 20, 229–236.Google Scholar
  31. Fall, R., 1996: Cycling of methanol between plants, methylotrophs and the atmosphere, inM. E. Lidstrom and F. R. Tabita (eds), Microbial Growth on C 1 Compounds, Kluwer Academic Publishers, the Netherlands, pp. 343–350.Google Scholar
  32. Fall, R. and Benson, A. A., 1996: Leaf methanol - the simplest natural product from plants, Trends in Plant Science 1, 296–301.Google Scholar
  33. Femenia, A., Garosi, P., Roberts, K., Waldron, K. W., Selvendran, R. R., and Robertson, J. A., 1998: Tissue-related changes in methyl-esterification of pectic polysaccharides in cauliflower (Brassica oleracea L. var. botrytis) stems, Planta 205, 438–444.Google Scholar
  34. Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P., 1998: Primary production of the biosphere: integrating terrestrial and oceanic components, Science 281, 237–240.Google Scholar
  35. Finnegan, E. J., Genger, R. K., Peacock, W. J., and Deniss, E. S., 1998: DNA methylation in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 233–247.Google Scholar
  36. Fisher, G. S., Legendre, M. G., Lovgren, N. V., Schuller, W. H., and Wells, J. A., 1979: Volatile constituents of southernpea seeds [Vigna unguiculata (L.)Walp.], J. Agric. Food Chem. 27, 7–11.Google Scholar
  37. Frenkel, C., Peters, J. S., Tieman, D. M., Tiznado, M. E., and Handa, A. K., 1998: Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit, J. Biol. Chem. 273, 4293–4295.Google Scholar
  38. Fry, S. C., 1988: The Growing Plant Cell Wall: Chemical and Metabolic Analysis, Longman Horton, Essex, U.K.Google Scholar
  39. Fukui, Y. and Doskey, P. V., 1998: Air-surface exchange of nonmethane organic compounds at a grassland site: seasonal variations and stressed emissions, J. Geophys. Res. 103, 13153–13168.Google Scholar
  40. Galbally, I. E., Garland, J. A., and Wilson, M. G. A., 1979: Sulphur uptake from the atmosphere by forest and farmland, Nature 280, 49-50.Google Scholar
  41. Galbally, I. E. and Roy, C. R., 1980: Destruction of ozone at the earth's surface, Quart. J. Roy. Meteorol. Soc. 106, 599–620.Google Scholar
  42. Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1995a: Hydrocarbon measurements in the southeastern United States: the rural oxidants in the southern environment (ROSE) program 1990, J. Geophys. Res. 100, 25945–25963.Google Scholar
  43. Goldan, P. D., Trainer, M., Kuster, W. C., Parrish, D. D., Carpenter, J., Roberts, J. M., Yee, J. E., and Fehsenfeld, F. C., 1995b: Measurements of hydrocarbons, oxygenated hydrocarbons, car bon monoxide, and nitrogen oxides in an urban basin in Colorado: implications for emission inventories, J. Geophys. Res. 100, 22771–22783.Google Scholar
  44. Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1997: Nonmethane hydrocarbon measurements during the tropospheric OH photochemistry experiment, J. Geophys. Res. 102, 6315–6324.Google Scholar
  45. Goldberg, R., Prat, R., and Morvan, C., 1994: Structural features of water-soluble pectins from mung bean hypocotyls, Carbohyd. Polymers 23, 203–210.Google Scholar
  46. Gordon, A. H., Lomax, J. A., Dalgarno, K., and Chesson, A., 1985: Preparation and composition of mesophyll, epidermis and fibre cell walls from leaves of perennial ryegrass (Lolium perenne) and Italian ryegrass (Lolium multiflorum), J. Sci. Food Agric. 36, 509–519.Google Scholar
  47. Gout, E., Aubert, S., Bligny, R., Rébeillé, F., Nonomura, A. R., Benson, A. A., and Douce, R., 2000: Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies, Plant Physiol. 123, 287–296.Google Scholar
  48. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J., and Thom, D., 1973: Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett. 32, 195–198.Google Scholar
  49. Guenther, A. B., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P. C., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P. R., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  50. Haber, C. L., Allen, L. N., Zhao, S., and Hanson, R. S., 1983: Methylotrophic bacteria: biochemical diversity and genetics, Science 221, 1147–1153.Google Scholar
  51. Hayashi, T., Morikawa, H., Nakajima, N., Ichikawa, Y., and Senda, M., 1980: Oriented structure of pectic polysaccharides in pea epidermal cell walls, Plant Cell Physiol. 21, 999–1005.Google Scholar
  52. Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R., 2000: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36, 231–284.Google Scholar
  53. Higgins, J., Scott, D., and Hammond, R. C., 1984: Transformation of C1 compounds by microorganisms, in D. T. Gibson (ed.), Microbial Degradation of Organic Compounds, Marcel Dekker, New York, pp. 43–87.Google Scholar
  54. Holland, F., Aschmutat, U., Heßling, M., Hofzumahaus, A., and Ehhalt, D. H., 1998: Highly time resolved measurements of OH during POPCORN using laser induced fluorescence spectroscopy, J. Atmos. Chem. 31, 205–225.Google Scholar
  55. Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H., Schade, G., and Crutzen, P. J., 1999: Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile and hydrogen cyanide, Geophys. Res. Lett. 26, 1161–1164.Google Scholar
  56. Holzinger, R., Sandoval-Soto, L., Rottenberger, S., Crutzen, P. J., and Kesselmeier, J., 2000: Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions, J. Geophys. Res. 105, 20573–20579.Google Scholar
  57. Houghton, R. A., Hackler, J. L., and Lawrence, K. T., 1999: The U.S. carbon budget: contributions from land-use change, Science 285, 574–578.Google Scholar
  58. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W., and Reverchon, S., 1996: Regulation of pectinolysis in Erwinia chrysanthemi, Annu. Rev. Microbiol. 50, 213–257.Google Scholar
  59. Ishii, T., 1997: Structure and functions of feruloylated polysaccharides, Plant Science 127, 111–127.Google Scholar
  60. Jacob, D. J., Sillman, S., Logan, J. A., and Wofsy, S. C., 1989: Least dependent variables method for simulation of tropospheric ozone, J. Geophys. Res. 94, 8497–8509.Google Scholar
  61. Jarvis, M. C., 1984: Structure and properties of pectin gels in plant cell walls, Plant Cell Environ. 7, 153–164.Google Scholar
  62. Jarvis, M. C., Forsyth, W., and Duncan, H. J., 1988: A survey of the pectic content of nonlignified monocot cell walls, Plant Physiol. 88, 309–314.Google Scholar
  63. Kim, J.-B. and Carpita, N. C., 1992: Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles, Plant Physiol. 98, 646–653.Google Scholar
  64. Kirk, T. K. and Farrell, R. L., 1987: Enzymatic 'combustion': the microbial degradation of lignin, Annu. Rev. Microbiol. 41, 465–505.Google Scholar
  65. Kirstine, W., Galbally, I. E., Ye, Y., and Hooper, M. A., 1998: Emissions of volatile organic compounds (primarily oxygenated species) from pasture, J. Geophys. Res. 103, 10605–10620.Google Scholar
  66. Kirstine, W. and Galbally, I. E., 1998: Biogenesis of methanol and its emission from flowering plants, Proceedings of the 14th International Clean Air and Environment Conference, Melbourne, Australia, pp. 517–522.Google Scholar
  67. Kreuzwieser, J., Schnitzler, J.-P., and Steinbrecher, R., 1999: Biosynthesis of organic compounds emitted by plants, Plant Biol. 1, 149–159.Google Scholar
  68. Lamanna, M. S. and Goldstein, A. H., 1999: In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation, J. Geophys. Res. 104, 21247–21262.Google Scholar
  69. Leibrock, E. and Slemr, J., 1997: Method for measurement of volatile oxygenated hydrocarbons in ambient air, Atmos. Environ. 31, 3329–3339.Google Scholar
  70. Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989: Zonal average cloud characteristics for global atmospheric chemistry modelling, GLOMAC report CM-76, UDC 551.510.4, International Meteorological Institute in Stockholm.Google Scholar
  71. Lelieveld, J. and Crutzen, P. J., 1991: The role of clouds in tropospheric photochemistry, J. Atmos. Chem. 12, 229–267.Google Scholar
  72. Lide, D. R. (ed.), 1999: CRC Handbook of Chemistry and Physics, 80th edn, CRC Press, Boca Raton.Google Scholar
  73. Liss, P. S. and Slater, P. G., 1974: Flux of gases across the air-sea interface, Nature 247, 181–184.Google Scholar
  74. Liss, P. S., 1983: Gas transfer: experiments and geochemical implications, in P. S. Liss and W. G. N. Slinn (eds), Sea Exchange of Gases and Particles, D. Reidel Publishing Co., Dordrecht, pp. 241–298.Google Scholar
  75. MacDonald, R. C. and Fall, R., 1993: Detection of substantial emissions of methanol from plants to the atmosphere, Atmos. Environ. 27A, 1709–1713.Google Scholar
  76. Mangos, T. J. and Haas, M. J., 1997: A spectrophotometric assay for the enzymatic demethoxlyation of pectins and the determination of pectinesterase activity, Anal. Biochem. 244, 357–366.Google Scholar
  77. Margan, D. E., Graham, N. M., Minson, D. J., and Searle, T. W., 1988: Energy and protein values of four forages including a comparison between tropical and temperate species, Aust. J. Exp. Agric. 28, 729–736.Google Scholar
  78. Massiot, P., Perron, V., Baron, A., and Drilleau, J.-F., 1997: Release of methanol and depolymerization of highly esterified apple pectin with an endopolygalacturonase from Aspergillus niger and pectin methylesterases from A. niger or from orange, Lebensm.-Wiss. u.-Technol. 30, 697–702.Google Scholar
  79. McCann, M. C. and Roberts, K., 1991: Architecture of the primary cell wall, in C. W. Lloyd (ed.), The Cytoskeletal Basis of Plant Growth and Form, Academic Press, London, pp. 109–129.Google Scholar
  80. McCann, M. C., Shi, J., Roberts, K., and Carpita, N. C., 1994: Changes in pectin structure and localization during the growth of unadapted and NaCl-adapted tobacco cells, Plant J. 5, 773–785.Google Scholar
  81. McFeeters, R. F. and Armstrong, S. A., 1984: Measurement of pectin methylation in plant cell walls, Anal. Biochem. 139, 212–217.Google Scholar
  82. McKenzie, L. M., Hao, W. M., Richards, G. N., and Ward, D. E., 1995: Measurement and modeling of air toxins from smouldering combustion of biomass, Environ. Sci. Technol. 29, 2047–2054.Google Scholar
  83. McNeil, M., Darvill, A. G., Fry, S. C., and Albersheim, P., 1984: Structure and function of the primary cell walls of plants, Annu. Rev. Biochem. 53, 625–663.Google Scholar
  84. Merk, S. and Riederer, M., 1997: Sorption of volatile C1 to C6 alkanols in plant cuticles, J. Exp. Bot. 48, 1095–1104.Google Scholar
  85. Miller, B. R., Huang, J., Weiss, R. F., Prinn, R. G., and Fraser, P. J., 1998: Atmospheric trend and lifetime of chlorodifluoromethane (HCFC-22) and the global tropospheric OH concentration, J. Geophys. Res. 103, 13237–13248.Google Scholar
  86. Mopper, K. and Zhou, X., 1990: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes, Science 250, 661–664.Google Scholar
  87. Monad, A. and Carlier, P., 1999: Impact of clouds on the tropospheric ozone budget: direct effect of multiphase photochemistry of soluble organic compounds, Atmos. Environ. 33, 4431–4446.Google Scholar
  88. Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A., and Rees, D. A., 1980: Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties, Int. J. Biol. Macromol. 2, 327–330.Google Scholar
  89. Moustacas, A.-M., Nari, J., Borel, M., Noat, G., and Ricard, J., 1991: Pectin methylesterase, metal ions and plant wall extension: the role of metal ions in plant cell-wall extension, Biochem. J. 279, 351–354.Google Scholar
  90. Mudgett, M. B. and Clarke, S., 1993: Characterisation of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme, Biochemistry 32, 11100–11111.Google Scholar
  91. Nari, J., Noat, G., and Ricard, J., 1991: Pectin methylesterase, metal ions and plant cell-wall extension, Biochem. J. 279, 343–350.Google Scholar
  92. Nemecek-Marshall, M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., and Fall, R., 1995: Methanol emission from leaves, Plant Physiol. 108, 1359–1368.Google Scholar
  93. Nursten, H. E., 1970: Volatile compounds: the aroma of fruits, in A. C. Hulme (ed.), The Biochemistry of Fruits and Their Products, Volume 1, Academic Press, New York, pp. 240–267.Google Scholar
  94. Plass, C., Koppmann, R., and Rudolph, J., 1992: Light hydrocarbons in the surface water of the mid-Atlantic, J. Atmos. Chem. 15, 235–251.Google Scholar
  95. Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R., 2001: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science 292, 1882–1888.Google Scholar
  96. Reid, I. D., 1992: Demethylation of the lignin model dimer 1-(3′,4′-dimethoxyphenyl)-2-(omethoxyphenoxy)-propane-1,3-diol by the white rot fungus Phlebia tremellosa, Can. J. Bot. 70, 453–460.Google Scholar
  97. Rexová-Benková, L. and Markovic, O., 1976: Pectic enzymes, Adv. Carbohydr. Chem. Biochem. 33, 323–385.Google Scholar
  98. Riemer, D., Pos, W., Milne, P., Farmer, C., Zika, R., Apel, E., Olszyna, K., Kleindienst, T., Lonneman, W., Bertman, S., Shepson, P., and Starn, T., 1998: Observations of nonmethane hydrocarbons and oxygenated organic compounds at a rural site in the southeastern United States, J. Geophys. Res. 03, 28111–28128.Google Scholar
  99. Sanderson, M. (ed.), 1990: UNESCO Sourcebook in Climatology, UNESCO, France.Google Scholar
  100. Schade, G. W. and Goldstein, A. H., 2001: Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation, J. Geophys. Res. 106, 3111–3123.Google Scholar
  101. Schlesinger, W. H., 1997: Biogeography: an Analysis of Global Change, 2nd edn, Academic Press, San Diego.Google Scholar
  102. Seinfeld, J. H. and Pandis, S. M., 1998: Atmospheric Chemistry and Physics, Wiley Interscience, New York.Google Scholar
  103. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J., 1995: High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature 378, 50–54.Google Scholar
  104. Singh, H., Chen, Y., Tabazadeh, A., Fukui, Y., Bey, I., Yantosca, R., Jacob, D., Arnold, F., Wohlfrom, K., Atlas, E., Flocke, F., Blake, D., Blake, N., Heikes, B., Snow, J., Talbot, R., Gregory, G., Sachse, G., Vay, S., and Kondo, Y., 2000: Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res. 105, 3795–3805.Google Scholar
  105. Snider, J. R. and Dawson, G. A., 1985: Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the southwestern United States and Henry's law data, J. Geophys. Res. 90, 3797–3805.Google Scholar
  106. Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 2000: Three-dimensional climatological distribution of tropospheric OH: update and evaluation, J. Geophys. Res. 105, 8931–8980.Google Scholar
  107. Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J., 2001: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res. 106, 12157–12182.Google Scholar
  108. van Elsas, J. D., Trevors, J. T., and Wellington, E. M. H., 1997: Modern Soil Microbiology, Marcel Dekker, New York.Google Scholar
  109. Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., and Matson, P. A., 1986: Human appropriation of the products of photosynthesis, BioScience 36, 368–373.Google Scholar
  110. Vreeland, V., Morse, S. R., Robichaux, R. H., Miller, K. L., Hua, S.-S., and Laetsch, W. M., 1989:Pectate distribution and esterification in Dubautia leaves and soybean nodules, studied with a fluorescent hybridization probe, Planta 177, 435–446.Google Scholar
  111. Wang, K.-Y. and Shallcross, D. E., 2000: A Lagrangian study of the three-dimensional transport of boundary-layer tracers in an idealised baroclinic-wave-life-cycle, J. Atmos. Chem. 35, 227–247.Google Scholar
  112. Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., and Lindinger, W., 1999: Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HOx chemistry, Global Biogeochem. Cycles 13, 9–17.Google Scholar
  113. Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D., Bertschi, I., Griffith, D.W. T., and Hao, W. M., 1999: Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy, J. Geophys. Res. 104, 30109–30125.Google Scholar
  114. Zhou, X. and Mopper, K., 1990: Determination of photochemically produced hydroxyl radicals in seawater and freshwater, Mar. Chem. 30, 71–88.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • I. E. Galbally
    • 1
  • W. Kirstine
    • 2
  1. 1.CSIRO Division of Atmospheric ResearchVicAustralia
  2. 2.School of Applied SciencesMonash UniversityChurchillAustralia

Personalised recommendations