Antonie van Leeuwenhoek

, Volume 82, Issue 1–4, pp 73–91 | Cite as

Comparative genomics of phages and prophages in lactic acid bacteria

  • Frank Desiere
  • Sacha Lucchini
  • Carlos Canchaya
  • Marco Ventura
  • Harald Brüssow


Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G+C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfi11-like genus of Siphoviridae is proposed. The gene maps of many phages show remarkable synteny in their structural genes defining a lambda super-group within Siphoviridae. A hierarchy of relatedness within the lambda super-group suggests elements of vertical evolution in Siphoviridae. Tailed phages are the result of both vertical and horizontal evolution and are thus fascinating objects for the study of molecular evolution. Prophage sequences integrated into the genomes of their bacterial host present theoretical challenges for evolutionary biologists. Prophages represent up to 10% of the genome in some LAB. In pathogenic streptococci prophages confer genes of selective value for the lysogenic cell. The lysogenic conversion genes are located between the lysin gene and the right phage attachment site. Non-attributed genes were found at the same genome position of prophages from lactic streptococci. These genes belong to the few prophage genes transcribed in the lysogen. Prophages from dairy bacteria might therefore also contribute to the evolutionary fitness of non-pathogenic LAB.

phage genomics prophages classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altermann E, Klein JR& Henrich B (1999) Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage phi adh. Gene 236: 333–346.Google Scholar
  2. Botstein D (1980) A theory of modular evolution for bacteriophages. Ann. NY Acad. Sci. 354: 484–490.Google Scholar
  3. Braun V, Hertwig S, Neve H, Geis A& Teuber M (1989) Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J. Gen. Microbiol. 135: 2551–2560.Google Scholar
  4. Brondsted L, Ostergaard S, Pedersen M, Hammer K& Vogensen FK (2001) Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: evolution, structure, and genome organization of lactococcal bacteriophages. Virology 283: 93–109.Google Scholar
  5. Bruttin A, Desiere F, Lucchini S, Foley S& Brüssow H (1997) Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage Sfi21. Virology 233: 136–148.Google Scholar
  6. Brüssow H (2001) Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283–303.Google Scholar
  7. Brüssow H& Desiere F (2001a) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213–223.Google Scholar
  8. Brüssow H& Desiere F (2001b) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213–222.Google Scholar
  9. Brüssow H& Hendrix R (2002) Phage genomics: Small is beautiful. Cell 108: 13–16.Google Scholar
  10. Brüssow H, Fremont M, Bruttin A, Sidoti J, Constable A& Fryder V (1994) Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl. Environ. Microbiol. 60: 4537–4543.Google Scholar
  11. Casjens S, Hatfull GF& Hendrix R (1992) Evolution of dsDNA tailed-bacteriophage genomes. Sem. Virol. 3: 383–397.Google Scholar
  12. Chandry PS, Moore SC, Boyce JD, Davidson BE& Hillier AJ (1997) Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol. Microbiol. 26: 49–64.Google Scholar
  13. Chopin A, Bolotin A, Sorokin A, Ehrlich SD& Chopin M (2001) Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29: 644–651.Google Scholar
  14. Desiere F, Lucchini S, Bruttin A, Zwahlen MC& Brüssow H (1997) A highly conserved DNA replication module from Streptococcus thermophilus phages is similar in sequence and topology to a module from Lactococcus lactis phages. Virology 234: 372–382.Google Scholar
  15. Desiere F, Lucchini S& Brüssow H (1998) Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 241: 345–356.Google Scholar
  16. Desiere F, Pridmore RD& Brüssow H (2000) Comparative genomics of the late gene cluster from lactobacillus phages. Virology 275: 294–305.Google Scholar
  17. Desiere F, Mahanivong C, Hillier A J, Chandry PS, Davidson BE& Brüssow H (2001) Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283: 240–252.Google Scholar
  18. Desiere F, McShan WM, van Sinderen D, Ferretti JJ& Brüssow H (2001b) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: Evolutionary implications for prophage-host interactions. Virology 288: 325–341.Google Scholar
  19. Duplessis M& Moineau S (2001) Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41: 325–336.Google Scholar
  20. Eppler K, Wyckoff E, Goates J, Parr R& Casjens S (1991) Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology 183: 519–538.Google Scholar
  21. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA& McLaughlin R (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. U.S.A. 98: 4658–4663.Google Scholar
  22. Foley S, Lucchini S, Zwahlen MC& Brüssow H (1998) A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage resistance to Streptococcus thermophilus. Virology 250: 377–387.Google Scholar
  23. Goshorn SC& Schlievert PM (1989) Bacteriophage association of streptococcal pyrogenic exotoxin type C. J. Bacteriol. 171: 3068–3073.Google Scholar
  24. Harrington DJ, Sutcliffe IC, Chanter N (2002) The molecular basis of Streptococcus equi infection and disease. Microbes Infect. 4(4): 501–105.Google Scholar
  25. Hendrix RW, Smith MC, Burns RN, Ford ME& Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl. Acad. Sci. U.S.A. 96: 2192–2197.Google Scholar
  26. Hynes WL& Ferretti JJ (1989) Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A. Infect. Immun. 57: 533–539.Google Scholar
  27. Hynes WL, Hancock L& Ferretti J J (1995) Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63: 3015–3020.Google Scholar
  28. Inagaki Y, Myouga F, Kawabata H, Yamai S& Watanabe H (2000) Genomic differences in Streptococcus pyogenes serotype M3 between recent isolates associated with toxic shock-like syndrome and past clinical isolates. J. Infect. Dis. 181: 975–983.Google Scholar
  29. Jarvis AW, Fitzgerald GF, Mata M, Mercenier A, Neve H, Powell IB, Ronda C, Saxelin M& Teuber M (1991) Species and type phages of lactococcal bacteriophages. Intervirology 32: 2–9.Google Scholar
  30. Jarvis AW, Lubbers MW, Beresford TP, Ward LJ, Waterfield NR, Collins LJ& Jarvis BD (1995) Molecular biology of lactococcal bacteriophage c2. Dev. Biol. Stand. 85: 561–567.Google Scholar
  31. Kodaira KI, Oki M, Kakikawa M, Watanabe N, Hirakawa M, Yamada K& Taketo A (1997) Genome structure of the Lactobacillus temperate phage phi g1e: the whole genome sequence and the putative promoter/repressor system. Gene 187: 45–53.Google Scholar
  32. Koonin EV, Aravind L& Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101: 573–576.Google Scholar
  33. Lawrence JG, Hendrix R& Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9(11): 535–540.Google Scholar
  34. Lazarevic V, Dusterhoft A, Soldo B, Hilbert H, Mauel C& Karamata D (1999) Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology 145 ( Pt 5): 1055–1067.Google Scholar
  35. Le Marrec C, van Sinderen D, Walsh L, Stanley E, Vlegels E, Moineau S, Heinze P, Fitzgerald G& Fayard B (1997) Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol. 63: 3246–3253.Google Scholar
  36. Loessner MJ, Inman RB, Lauer P& Calendar R (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol. Microbiol. 35: 324–340.Google Scholar
  37. Lubbers MW, Waterfield NR, Beresford TP, Le PR& Jarvis AW (1995) Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl. Environ. Microbiol. 61: 4348–4356.Google Scholar
  38. Lucchini S, Desiere F& Brüssow H (1998) The structural gene module in Streptococcus thermophilus bacteriophage phi Sfi11 shows a hierarchy of relatedness to Siphoviridae from a wide range of bacterial hosts. Virology 246: 63–73.Google Scholar
  39. Lucchini S, Desiere F& Brüssow H (1999a) Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J. Virol. 73: 8647–8656.Google Scholar
  40. Lucchini S, Desiere F& Brüssow H (1999b) Similarly organized lysogeny modules in temperate Siphoviridae from low GC content Gram-positive bacteria. Virology 263: 427–435.Google Scholar
  41. Lucchini S, Desiere F& Brüssow H (1999c) The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: Whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 260: 232–243.Google Scholar
  42. Madsen PL& Hammer K (1998) Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology 144: 2203–2215.Google Scholar
  43. Mahanivong C, Boyce JD, Davidson BE& Hillier AJ (2001) Sequence analysis and molecular characterization of the Lactococcus lactis temperate bacteriophage BK5-T. Appl Environ Microbiol. 67: 3564–3576.Google Scholar
  44. Marciel AM, Kapur V& Musser JM (1997) Molecular population genetic analysis of a Streptococcus pyogenes bacteriophageencoded hyaluronidase gene: recombination contributes to allelic variation. Microb. Pathog. 22: 209–217.Google Scholar
  45. Martin AC, Lopez R& Garcia P (1996) Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J. Virol. 70: 3678–3687.Google Scholar
  46. McShan WM, Tang YF& Ferretti JJ (1997) Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol. Microbiol. 23: 719–728.Google Scholar
  47. Mikkonen M, Dupont L, Alatossava T& Ritzenthaler P (1996) Defective site-specific integration elements are present in the genome of virulent bacteriophage LL-H of Lactobacillus delbrueckii. Appl. Environ. Microbiol. 62: 1847–1851.Google Scholar
  48. Mikkonen M, Raisanen L& Alatossava T (1996) The early gene region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 175: 49–57.Google Scholar
  49. Moscoso M& Suarez JE (2000) Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei. Virology 273: 101–111.Google Scholar
  50. Nelson D, Loomis L& Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. U.S.A. 98: 4107–4112.Google Scholar
  51. Neve H, Zenz KI, Desiere F, Koch A, Heller KJ& Brüssow H (1998) Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: Implications for the modular theory of phage evolution. Virology 241: 61–72.Google Scholar
  52. Nida SK& Ferretti JJ (1982) Phage influence on the synthesis of extracellular toxins in group A streptococci. Infect. Immun. 36: 745–750.Google Scholar
  53. Prevots F, Mata M& Ritzenthaler P (1990) Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Appl. Environ. Microbiol. 56: 2180–2185.Google Scholar
  54. Schouler C, Ehrlich SD& Chopin MC (1994) Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. Microbiology. 140: 3061–3069.Google Scholar
  55. Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL& Musser JM (2001) Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc. Natl. Acad. Sci. U.S.A. 98: 10416–10421.Google Scholar
  56. Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Chaussee MS, Sylva GL, Sturdevant DE, Ricklefs SM, Porcella SF, Parkins LD, Beres SB, Campbell DS, Smith TM, Zhang Q, Kapur V, Daly JA, Veasy LG& Musser JM (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. U.S.A. 99: 4668–4673.Google Scholar
  57. Sonnhammer E L& Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1–10.Google Scholar
  58. Stanley, E., Fitzgerald, G. F., Le Marrec, C., Fayard, B., and van Sinderen, D. (1997). Sequence analysis and characterization of phi O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology. 143: 3417–3429.Google Scholar
  59. Stanley E, Walsh L, van der ZA, Fitzgerald GF& van Sinderen D (2000) Identification of four loci isolated from two Streptococcus thermophilus phage genomes responsible for mediating bacteriophage resistance. FEMS Microbiol. Lett. 182: 271–277.Google Scholar
  60. Tremblay DM& Moineau S (1999) Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 255: 63–76.Google Scholar
  61. van Sinderen D, Karsens H, Kok J, Terpstra P, Ruiters MH, Venema G& Nauta A (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol. Microbiol. 19: 1343–1355.Google Scholar
  62. Vasala A, Dupont L, Baumann M, Ritzenthaler P& Alatossava T (1993) Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages. J. Virol. 67: 3061–3068.Google Scholar
  63. Ventura M, Bruttin A, Canchaya C&Brüssow H (2002) Transcription analysis of Streptococcus thermophilus phages in the lysogenic state. (2002) Virology. (In Press).Google Scholar
  64. Weeks CR& Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect. Immun. 46: 531–536.Google Scholar
  65. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S& Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860–864.Google Scholar
  66. Yu CE& Ferretti JJ (1991) Molecular characterization of new group A streptococcal bacteriophages containing the gene for streptococcal erythrogenic toxin A (speA). Mol. Gen. Genet. 231: 161–168.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Frank Desiere
    • 1
  • Sacha Lucchini
    • 1
  • Carlos Canchaya
    • 1
  • Marco Ventura
    • 1
  • Harald Brüssow
    • 1
  1. 1.Vers-chez-les-BlancNestlé Research Center, Nestec Ltd.CH Lausanne 26Switzerland

Personalised recommendations