Advertisement

Colloid Journal

, Volume 64, Issue 5, pp 620–631 | Cite as

Intermolecular Interactions in the Binary Systems of Cationic and Nonionic Surfactants

  • T. V. Kharitonova
  • N. I. Ivanova
  • B. D. Summ
Article

Abstract

The micellization of the mixtures of cationic (cetyltrimethylammonium bromide, cetylpyridinium bromide) and nonionic (Triton X-100) surfactants at various content of components in aqueous solutions, as well as the adsorption of surfactants at the air/solution interface were studied. The effect of negative deviation from the ideality was discovered during the formation of mixed micelles and adsorption layers. Various theoretical approaches to the quantitative description of mixed systems were compared within the framework of the model of pseudophase separation. The parameters of intermolecular interaction in mixed micelles and adsorption layers, excess free energies of micellization and adsorption, compositions of micelles and adsorption layers were calculated. It was shown that the use of various theoretical approaches for the analysis of interactions in surfactant mixtures leads to close numerical results. It was shown that the composition of mixed micelles and adsorption layers, as well as the parameters of intermolecular interaction and the excess free energy depend on the relative content and molecular structure of surfactants (mixture components).

Keywords

Surfactant Bromide Binary System Intermolecular Interaction Theoretical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Holland, P.M. and Rubingh, D.N., J. Phys. Chem., 1983, vol. 87, p. 1984.Google Scholar
  2. 2.
    Rosen, M.J., Phenomena in Mixed Surfactant Systems, Scamehorn, J.F., Ed., Washington: American Chemical Society, ACS Symp. Ser., 1986, vol. 31, p. 144.Google Scholar
  3. 3.
    Motomura, K., Ando, N., Matsuki, H., and Aratono, M., J. Colloid Interface Sci., 1990, vol. 139, p. 188.Google Scholar
  4. 4.
    Puvvada, S. and Blankschtein, D., J. Phys. Chem., 1992, vol. 96, p. 5567.Google Scholar
  5. 5.
    Hines, J.D., Langmuir, 2000, vol. 16, p. 7575.Google Scholar
  6. 6.
    Rosen, M.J. and Zhu, Z.H., J. Colloid Interface Sci., 1989, vol. 133, p. 473.Google Scholar
  7. 7.
    Pletnev, M.Yu., in Uspekhi kolloidnoi khimii (Advances in Colloid Chemistry), Rusanov, A.I., Ed., Leningrad: Khimiya, 1991, p. 60.Google Scholar
  8. 8.
    Hassan, P.A., Bhagwat, S.S., and Manohar, C., Langmuir, 1995, vol. 11, p. 470.Google Scholar
  9. 9.
    Ghosh, S. and Moulik, S.P., J. Colloid Interface Sci., 1998, vol. 208, p. 357.Google Scholar
  10. 10.
    Gui, Z.-G. and Canselier, J.P., Colloid Polym. Sci., 2000, vol. 278, p. 22.Google Scholar
  11. 11.
    Penfold, J., Staples, E.J., Tucker, I., and Thompson, L.J., Colloids Surf. A, 1995, vol. 102, p. 127.Google Scholar
  12. 12.
    Penfold, J., Staples, E.J., Tucker, I., and Thompson, L.J., Langmuir, 1997, vol. 13, p. 6638.Google Scholar
  13. 13.
    Penfold, J., Staples, E.J., Tucker, I., et al., Langmuir, 1998, vol. 14, p. 2139.Google Scholar
  14. 14.
    Rusanov, A.I., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micelle Formation in Surfactant Solutions), St. Petersburg: Khimiya, 1992.Google Scholar
  15. 15.
    Motomura, K. and Aratono, M., Mixed Surfactant Systems, Ogino, K. and Abe, M., Eds., Moscow: Marcel Dekker, Surfactant Sci. Ser., 1993, vol. 46, p. 99.Google Scholar
  16. 16.
    Aratono, M., Villeneuve, M., Takiue, T., et al., J. Colloid Interface Sci., 1998, vol. 200, p. 161.Google Scholar
  17. 17.
    Eads, C.D. and Robosky, L.C., Langmuir, 1999, vol. 15, p. 2661.Google Scholar
  18. 18.
    Nagarajan, R. and Ruckenstein, E., Langmuir, 1991, vol. 7, p. 2934.Google Scholar
  19. 19.
    Puvvada, S. and Blankschtein, D., J. Phys. Chem., 1992, vol. 96, p. 5567.Google Scholar
  20. 20.
    Shiloach, A. and Blankschtein, D., Langmuir, 1998, vol. 14, p. 1618.Google Scholar
  21. 21.
    Shiloach, A. and Blankschtein, D., Langmuir, 1998, vol. 14, p. 7166.Google Scholar
  22. 22.
    Siddiqui, F.A. and Franses, E.I., Langmuir, 1996, vol. 12, p. 354.Google Scholar
  23. 23.
    Nikas, Y.J., Puvvada, S., and Blankschtein, D., Langmuir, 1992, vol. 8, p. 2680.Google Scholar
  24. 24.
    Mulqueen, M. and Blankschtein, D., Langmuir, 1999, vol. 15, p. 8832.Google Scholar
  25. 25.
    Hines, J.D., Langmuir, 2000, vol. 16, p. 7575.Google Scholar
  26. 26.
    Nguyen, C.M., Rathman, J.F., and Scamehorn, J.F., J. Colloid Interface Sci., 1986, vol. 112, p. 438.Google Scholar
  27. 27.
    Zhu, D.-M. and Zhao, G.-X., Colloids Surf., 1990, vol. 49, p. 269.Google Scholar
  28. 28.
    Rodenas, E., Valiente, M., and del Sol Villatruela, M., J. Phys. Chem. B, 1999, vol. 103, p. 4549.Google Scholar
  29. 29.
    Rosen, M.J. and Hua, X.Y., J. Colloid Interface Sci., 1982, vol. 86, p. 164.Google Scholar
  30. 30.
    Rosen, M.J. and Zhao, F., J. Colloid Interface Sci., 1983, vol. 95, p. 443.Google Scholar
  31. 31.
    Rosen, M.J. and Zhu, B.Y., J. Colloid Interface Sci., 1984, vol. 99, p. 435.Google Scholar
  32. 32.
    Babak, V.G., Anchipolovskii, M.A., Vikhoreva, G.A., and Lukina, I.G., Kolloidn. Zh., 1996, vol. 58, no. 2, p. 155.Google Scholar
  33. 33.
    Babak, V.G., Pavlov, A.N., Svitova, T.F., et al., Kolloidn. Zh., 1996, vol. 58, no. 1, p. 5.Google Scholar
  34. 34.
    Hassan, P.A., Bhagwat, S.S., and Manohar, C., Langmuir, 1995, vol. 11, p. 470.Google Scholar
  35. 35.
    Carnero Ruiz, C. and Aguiar, J., Langmuir, 2000, vol. 16, p. 7946.Google Scholar
  36. 36.
    Kharitonova, T.V., Ivanova, N.I., and Summ, B.D., Kolloidn. Zh., 2002, vol. 64, no. 2, p. 249.Google Scholar
  37. 37.
    Desai, T.R. and Dixit, S.G., J. Colloid Interface Sci., 1996, vol. 177, p. 471.Google Scholar
  38. 38.
    Kostikov, R.R. and Bespalov, V.Ya., Osnovy teoreticheskoi organicheskoi khimii (Foundations of Theoretical Organic Chemistry), Leningrad: Leningr. Univ., 1982.Google Scholar
  39. 39.
    Huibers, P.D., Langmuir, 1999, vol. 15, p. 7546.Google Scholar
  40. 40.
    Durov, V.A. and Ageev, E.P., Termodinamicheskaya teoriya rastvorov neelektrolitov (Thermodynamic Theory of Nonelectrolyte Solutions), Moscow: Mosk. Univ., 1987.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • T. V. Kharitonova
    • 1
  • N. I. Ivanova
    • 1
  • B. D. Summ
    • 1
  1. 1.Department of ChemistryMoscow State University, Vorob'evy goryMoscowRussia

Personalised recommendations