Antonie van Leeuwenhoek

, Volume 82, Issue 1–4, pp 341–352 | Cite as

The Intestinal LABs

  • Elaine E. Vaughan
  • Maaike C. de Vries
  • Erwin G. Zoetendal
  • Kaouther Ben-Amor
  • Antoon D.L. Akkermans
  • Willem M. de Vos


The complete gastrointestinal (GI) tract of humans is colonised soon after birth by a myriad of microbial species with a characteristic distribution depending on the location. GI-tract ecology has been experiencing a revival due to the development of molecular techniques, especially those based on 16S RNA (zRNA) genes. A richer ecosystem than previously imagined of novel species is being discovered that is significantly influenced by our host genotype. Special attention has been focused on the bifidobacteria and the lactic acid bacterial (LAB) populations, both those that are naturally present within this complex ecosystem and those that are ingested as probiotics in functional foods. Overall this interest stems from a increasing awareness of interplay between microflora, diet and the health of the host, and is further stimulated by an increasing incidence of gastrointestinal illnesses and atopy. Substantial documentation of benefits to host health has especially distinguished the LAB for multidisciplinary research aimed to determine the molecular mechanisms involved. Recent advances in molecular technologies, including high-throughput genomics-based approaches, can significantly advance our understanding of the microbe–diet–host interactions and offer valuable information for design and application of health-targeted microbes.

bifidobacteria intestine lactic acid bacteria microbiota molecular methods 16S rRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben Amor K, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, de Vos WM&Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of the viable, injured and dead cells of bifidobacteria during bile salt stress. Submitted.Google Scholar
  2. Bengmark S (2000) Bacteria for optimal health. Nutr. 16: 611–615.Google Scholar
  3. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73S: 399S–405S.Google Scholar
  4. Biavati B, Sorbati B& Scardovi V (1991) The genus Bifidobacterium. In: Balows A, Truper HG, Dworkin M, Harder W& Schleifer KH (Eds) The Prokaryotes, 2nd edn. (pp 816–833). Springer-Verlag, New York.Google Scholar
  5. Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collins K& Morelli L (1999) Adhesion studies for probiotics: need for validation and refinement. Trends Food Sci. Technol. 10: 405–410.Google Scholar
  6. Boot HJ& Pouwels PH (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21: 1117–1123.Google Scholar
  7. Bunthof CJ, Bloemen K, Breeuwer P, Rombouts FM& Abee T (2001) Flow cytometric assessment of viability of lactic acid bacteria. Appl. Environ. Microbiol. 67: 2326–2335.Google Scholar
  8. Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G& Podolsky DK (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Path. 160: 165–173.Google Scholar
  9. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69: 1046S–1051S.Google Scholar
  10. Chaussee MS, Watson RO, Smoot JC& Musser JM (2001) Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect. Immun. 69: 822–831.Google Scholar
  11. Christiaens H, Leer RJ, Pouwels PH& Verstraete W(1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792–3798.Google Scholar
  12. Collins MD, Rodrigues U, Aguirre M, Farrow JAE, Martinez-Murcia A, Philips BA, Williams AM& Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 77: 5–12.Google Scholar
  13. Corthier G, Delorme C, Ehrlich SD& Renault P (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl. Environ. Microbiol. 64: 2721–2722.Google Scholar
  14. Crittenden R, Saarela M, Mättö J, Ouwehand AC, Salminen S, Pelto L, Vaughan EE, de Vos WM, von Wright A, Fondén R& Mattila-Sandholm T (2002) Lactobacillus paracasei F19: survival, ecology and safety in the human intestinal tract. Microbial Ecol. Health Dis. S3: 22–26.Google Scholar
  15. De Angelis M, Bini L, Pallini V, Cocconcelli PS& Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147: 1863–1873.Google Scholar
  16. DePlancke B, Hristova KR, Oakley HA, McCracken VJ, Aminov R, Mackie RI& Gaskins HR (2000) Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66: 2166–2174.Google Scholar
  17. De Roos NM& Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.Google Scholar
  18. De Vos (2001) Advances in genomics for microbial food fermentations and safety. Curr. Opin. Biotechnol. 12: 493–498.Google Scholar
  19. Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Environ. Microbiol. 65: 4881–4886.Google Scholar
  20. Dunne C, Murphy L, Flynn S, O'Mahony L, O'Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EM, O'Sullivan GC, Shanahan F& Collins JK (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76: 279–292.Google Scholar
  21. Ëlkins CA& Savage DC (1998) Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180: 4344–4349.Google Scholar
  22. Falk PG, Hooper LV, Midtvedt T& Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62: 1157–1170.Google Scholar
  23. Favier C, Vaughan EE, De Vos WM& Akkermans ADL (2002) Molecular Monitoring of succession of bacterial communities in human neonates. Appl. Envir. Microbiol. 68: 219–226.Google Scholar
  24. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F& Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with groupspecific 16S rRNA-targeted oligonucleotide probes. Appl. Envir. Microbiol. 64: 3336–3345.Google Scholar
  25. Geoffroy M-C, Guyard C, Quatannens B, Pavan S, Lange M& Mercenier A (2000) Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl. Environ. Microbiol. 66: 383–391.Google Scholar
  26. Gouesbet G, Jan G& Boyaval P (2002) Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl. Environ. Microbiol. 68: 1055–1063.Google Scholar
  27. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A& Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077.Google Scholar
  28. Graves PR& Haystead TA (2002) Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66: 39–63.Google Scholar
  29. Haller D, Bode C, Hammes WP, Pfeifer AM, Schiffrin EJ& Blum S (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 2000. 47: 79–87.Google Scholar
  30. Handelsman J, Rondon MR, Brady SF, Clardy J& Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245–249.Google Scholar
  31. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG& Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67.Google Scholar
  32. Harmsen HJM, Elfferich P, Schut P& Welling GW (1999a) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridisation. Microbial Ecology in Health and Disease 11: 3–12.Google Scholar
  33. Harmsen HJM, Gibson GR, Elfferich P, Raangs GC, Wildeboer-Veloo ACM, Argaiz A, Roberfroid MB& Welling GW (1999b) Comparison of viable cell counts and fluorescence in situ hybridisation using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol. Lett. 183: 125–129.Google Scholar
  34. He F, Ouwehand AC, Isolauri E, Hashimoto H, Benno Y& Salminen S (2001a) Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol. Med. Microbiol. 30: 43–47.Google Scholar
  35. He F, Ouwehand A, Isolauri E, Hosoda M, Benno Y& Seppo S (2001b) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43: 351–354.Google Scholar
  36. Heilig GHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL& de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA Appl. Envir. Microbiol. 68: 114–123.Google Scholar
  37. Hooper LV& Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292: 1115–1118.Google Scholar
  38. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG& Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884.Google Scholar
  39. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG& Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect. Immun. 70: 1254–1259.Google Scholar
  40. Jansen GJ, Wildeboer-Veloo AC, Tonk RH, Franks AH& Welling GW (1999) Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Methods 37: 215–221.Google Scholar
  41. Kilstrup M, Jacobsen S, Hammer K& Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63: 1826–1837.Google Scholar
  42. Kimura K, McCartney AL, McConnell MA& Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigations of the immunological responses of their human hosts to the predominant strains. Appl. Environ. Microbiol. 63: 3394–3398.Google Scholar
  43. Kitts LC (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2: 17–25.Google Scholar
  44. Klaenhammer TRK, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de Guchte M, Guzzo J, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van Sinderen D, Sorokin A, Steele J, O'Sullivan D, de Vos W, Weimer B, Zagorec M&Siezen R (2002) Discovering lactic acid bacteria by genomics Antonie van Leeuwenhoek. This issue.Google Scholar
  45. Kleessen B, Bezirtzoglu & Matto J (2000) Culture based knowledge on biodiversity, development and stability of human gastrointestinal microflora. Microb. Ecol. Health Dis. Suppl. 2: 53–63.Google Scholar
  46. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL& Comstock LE (2001) Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414: 555–558.Google Scholar
  47. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis G, Wilkinson MHF& Welling GW (1995) Quantitative fluorescence in situ hybridisation of Bifidobacterium spp. with genusspecific 16S rRNA targetted probe and its application in fecal samples. Appl. Environ. Microbiol. 61: 3069–3075.Google Scholar
  48. Lesuffleur T, Porchet N, Aubert JP, Swallow D, Gum JR, Kim YS, Real FX& Zweibaum A (1993) Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J. Cell. Sci. 106: 771–83.Google Scholar
  49. Lim EM, Ehrlich SD& Maguin E (2000) Identification of stressinducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557–2561.Google Scholar
  50. Mack DR, Michail S, Wei S, McDougall L& Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Amer. J. Physiol. 276: G941–G950.Google Scholar
  51. Mackie RI, Sghir A& Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999 69: 1035S–1045S.Google Scholar
  52. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A& Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67: 4939–4942.Google Scholar
  53. Matsuki T, Watanabe K, Tanaka R& Oyaizu H (1998) Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted species-and group-specific primers. FEMS Microbiol. Lett. 167: 113–121.Google Scholar
  54. Mattila-Sandholm T, Blaut M, Daly C, De Vuyst L, Dore J, Gibson G, Goossens H, Knorr D, Lucas J, Lähteenmaki L, Mercenier A, Saarela M, Shahanan F&de Vos WM (2002a) Food, GItract functionality and Human health cluster, PROEUHEALTH. Microbial Ecol. Health Dis. In press.Google Scholar
  55. Mattila-Sandholm T, Myllärinen, Crittenden R, Mogensen G, Fondén R & Saarela M, (2002b) Technological challenges for future probiotic foods. Int. Dairy J. 12: 173–182.Google Scholar
  56. McCartney AL, Wenzhi W& Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl. Environ. Microbiol. 62: 4608–4613.Google Scholar
  57. Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria. Vol.1, The Lactic Acid Bacteria in Health and Disease (pp 69–114). Elsevier Applied Science, London, UK.Google Scholar
  58. Miyake T, Watanabe K, Watanabe T& Oyaizu H (1998) Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol. Immunol. 42: 661–667.Google Scholar
  59. Moore WE& Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27: 961–979.Google Scholar
  60. Morelli L, Cesena C, de Haen C& Gozzini L (1998) Taxonomic Lactobacillus composition of feces from human newborns during the first few days. Microb. Ecol. 35: 205–212.Google Scholar
  61. Muyzer G& Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141.Google Scholar
  62. Nakayama J, Akkermans ADL&de Vos WM (2002) Genomic survey of two-component regulatory systems putatively involved in peptide pheromone mediated quorum sensing of low G+C gram-positive bacteria. Submitted.Google Scholar
  63. Neutra RN& Forstner JF (1987) Gastrointestinal mucus: synthesis, secretion and function. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, 2nd edn. Raven Press, New York.Google Scholar
  64. Ouwehand AC, Salminen S, Tölkkö S, Roberts P, Ovaska J& Salminen E (2002) Resected human colonic tissue: new model for characterizing adhesion of lactic acid bacteria. Clin. Diagn. Lab. Immunol. 9: 184–186.Google Scholar
  65. Ouwehand AC, Tuomola EM, Lee YK& Salminen E (2001) Microbial interactions to intestinal mucosal models. Methods Enzymol. 337: 200–212.Google Scholar
  66. Patent, TNO, International Patent (1996) PCT/NL96/00409.Google Scholar
  67. Phelps TJ, Palumbo AV& Beliaev AS (2002) Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol. 13: 20–24Google Scholar
  68. Randazzo CL, Torriani S, Akkermans ADL, de Vos WM& Vaughan EE (2002) Diversity, dynamics and activity of bacterial communities during production of an artisanal sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ. Microbiol. 68: 1882–1892.Google Scholar
  69. Rang CU, Licht TR, Midtvedt T, Conway PL, Chao L, Krogfelt KA, Cohen PS& Molin S (1999) Estimation of growth rates of Escherichia coli BJ4 in streptomycintreated and previously germfree mice by in situ rRNA hybridisation. Clin. Diag. Lab. Immunol. 6: 434–436.Google Scholar
  70. Rechinger KB, Siegumfeldt H, Svendsen I& Jakobsen M (2000) 'Early' protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and twodimensional gel electrophoresis. Electrophoresis 21: 2660–2669.Google Scholar
  71. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr. Issues Intest. Microbiol 2: 43–53.Google Scholar
  72. Rokbi B, Seguin D, Guy B, Mazarin V, Vidor E, Mion F, Cadoz M& Quentin-Millet M-J (2001) Assessment of Helicobacter pylori gene expression within mouse and human gastric mucosae by real time reverse transcriptase PCR. Infect. Immun. 69: 4759–4766.Google Scholar
  73. Roos S& Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148: 433–442.Google Scholar
  74. Roos S, Lindgren S& Jonsson H (1999) Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Mol Microbiol. 32: 427–436.Google Scholar
  75. Roos S, Aleljung P, Robert N, Lee B, Wadstrom T, Lindberg M& Jonsson H (1996) A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system? FEMS Microbiol. Lett. 144: 33–38.Google Scholar
  76. Salminen S, Deighton MA, Benno Y& Gorbach SL (1998) Lactic acid bacteria in health and disease. In: Salminen S& von Wright A (Eds) Lactic Acid Bacteria. Microbiology and Functional Aspects, 2nd edn. (pp 211–253). Marcel Dekker, Inc., New York.Google Scholar
  77. Satokari RM, Vaughan EE, Akkermans AD, Saarela M& de Vos WM (2001a) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 504–513.Google Scholar
  78. Satokari RM, Vaughan EE, Akkermans AD, Saarela M& De Vos WM (2001b) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst. Appl. Microbiol. 24: 227–231.Google Scholar
  79. Satokari RM, Vaughan EE, Favier CF, Doré J, Edwards C&de Vos WM (2002) Diversity of Bifidobacterium and Lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rDNA sequence differences. Microbiol. Ecol. Health Dis. In press.Google Scholar
  80. Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM& Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491–497.Google Scholar
  81. Schleifer KH& Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB& WH Holzapfel (Eds) The Genera of Lactic Acid Bacteria: The Lactic Acid Bacteria, Vol. 2 (pp 7–17). Chapman and Hall, Glasgow.Google Scholar
  82. Sghir A, Gramet G, Suau A, Rochet V, Pochart P& Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263–2266.Google Scholar
  83. Shanahan F (2001) Turbo probiotics for IBD. Gastroenterology 120: 1297–1298.Google Scholar
  84. Simmering R& Blaut M (2001) Pro-and prebiotics-the tasty guardian angels? Appl. Microbiol. Biotechnol. 55: 19–28.Google Scholar
  85. Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C& Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761–5770.Google Scholar
  86. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W& Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355.Google Scholar
  87. Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M& Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ, Microbiol. 65: 4108–4117.Google Scholar
  88. Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE&de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek. In press.Google Scholar
  89. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD& Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799–4807.Google Scholar
  90. Swift S, Vaughan EE& de Vos WM (2000) Quorum sensing within the gut ecosystem. Microbial Ecol. Health Dis. 2S: 88–92.Google Scholar
  91. Tanaka H, Hashiba H, Kok J& Mierau I (2000) Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 2502–2512.Google Scholar
  92. Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 76: 265–278.Google Scholar
  93. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J& Gopal PK (2000) Analysis of the faecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.Google Scholar
  94. Tuomola E, Crittenden R, Playne M, Isolauri E& Salminen S (2001) Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 73(2S): 393S–398S.Google Scholar
  95. Vaughan EE, Mollet B& de Vos WM(1999) Functionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Curr. Opin. Biotech. 10: 505–510.Google Scholar
  96. Vaughan EE, Schut F, Heilig GHJ, Zoetendal EG, de Vos WM& Akkermans ADL (2000) A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1: 1–12.Google Scholar
  97. Vesa T, Pochart P& Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG1363 in the human gastrointestinal tract. Aliment Pharmacol Ther. 14: 823–828.Google Scholar
  98. Vidal K, Donnet-Hughes A& Granato D (2002) Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect. Immun. 70: 2057–2064.Google Scholar
  99. Walter J, Hertel C, Tannock GW, Lis CM, Munro K& Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578–2585.Google Scholar
  100. Wilson (1995) The gastrointestinal microflora. In Yamada T (Ed) Textbook of Gastroenterology (pp 607–615). JP Lippincott, Philadelphia.Google Scholar
  101. Winson MK& Davey HM (2000) Flow cytometric analysis of microorganisms. Methods 21: 231–240.Google Scholar
  102. Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP& Abee T (1999a) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145: 3185–3194.Google Scholar
  103. Wouters JA, Rombouts FM, de Vos WM, Kuipers OP& Abee T (1999b) Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl. Environ. Microbiol. 65: 4436–4442.Google Scholar
  104. Ye RW, Wang T, Bedzyk L& Croker KM (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Methods 47: 257–272.Google Scholar
  105. Zoetendal EG, Akkermans ADL& de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human faecal samples reveals stable and host specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854–3859.Google Scholar
  106. Zoetendal EG, Akkermans ADL& de Vos WM (2001a) Molecular characterisation of bacterial communities in the human gastrointestinal tract. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  107. Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM& de Vos WM (2001b) The host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecol. Health Dis. 13: 129–134.Google Scholar
  108. Zoetendal EG, Ben-Amor K, Akkermans ADL, Abee T& de Vos WM (2001c) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. System. Appl. Microbiol. 24: 405–410.Google Scholar
  109. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL& de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68: 3401–3407.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Elaine E. Vaughan
    • 1
  • Maaike C. de Vries
    • 1
    • 2
  • Erwin G. Zoetendal
    • 1
    • 2
  • Kaouther Ben-Amor
    • 1
  • Antoon D.L. Akkermans
    • 1
  • Willem M. de Vos
    • 1
    • 2
  1. 1.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Wageningen Centre for Food SciencesWageningenThe Netherlands

Personalised recommendations