Molecular Biology

, Volume 36, Issue 5, pp 650–658 | Cite as

Tree Reconciliation: Reconstruction of Species Phylogeny by Phylogenetic Gene Trees

  • V. V. V'yugin
  • M. S. Gelfand
  • V. A. Lyubetsky


It is well known that phylogenetic trees derived from different protein families are often incongruent. This is explained by mapping errors and by the essential processes of gene duplication, loss, and horizontal transfer. Therefore, the problem is to derive a “consensus” tree best fitting the given set of gene trees. This work presents a new method of deriving this tree. The method is different from the existing ones, since it considers not only the topology of the initial gene trees, but also the reliability of their branches. Thereby one can explicitly take into account the possible errors in the gene trees caused by the absence of reliable models of sequence evolution, by uneven evolution of different gene families and taxonomic groups, etc.

phylogenetic species tree phylogenetic protein tree tree mapping tree reconciliation mitochondrial genomes eukaryotes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weir, B., Analysis of Genetic Data. Translated under the title Analiz geneticheskikh dannykh, Moscow: Mir, 1995.Google Scholar
  2. 2.
    Waterman, M.S., Introduction to Computational Biology, Chapman and Hall, 1995.Google Scholar
  3. 3.
    Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., and Matsuda, G., Syst. Zool., 1979, vol. 28, pp. 132–163.Google Scholar
  4. 4.
    Guigo, R., Muchnik, I., and Smith, T., Mol. Phyl. Evol., 1996, vol. 6, pp. 189–213.Google Scholar
  5. 5.
    Page, R.D.M. and Charlstone, M.A., Mol. Phyl. Evol., 1997, vol. 7, pp. 231–240.Google Scholar
  6. 6.
    Page, R.D.M., Bioinformatics Application Notes, 1998, vol. 14, pp. 819–820.Google Scholar
  7. 7.
    Eulenstein, O. and Vingron, M., Arbeitspapiere der GMD, Bonn, Germany, 1995, vol. 936.Google Scholar
  8. 8.
    Eulenstein, O., Mirkin, B., and Vingron, M., J. Comput. Biol., 1998, vol. 5, 135–148.Google Scholar
  9. 9.
    Schieber, B. and Vishkin, U., SIAM J. Comput., 1988, vol. 17, pp. 1253–1262.Google Scholar
  10. 10.
    Felsenstein, J., Cladistics, 1989, vol. 5, pp. 164–166 [http://evolution.genetics.washington. edu/phylip.html].Google Scholar
  11. 11.
    Page, R.D.M., Mol. Phyl. Evol., 2000, vol. 14, pp. 89–106.Google Scholar
  12. 12.
    12. Page, R.D.M. and Charleston, M.A., Mathematical Hierarchies in Biology, DIMACS, 1997, vol. 37.Google Scholar
  13. 13.
    Wheeler, D.L., Chappey, C., Lash, A.E., Leipe, D.D., Madden, T.L., Schuler, G.D., Tatusova, T.A., and Rapp, B.A., Nucleic Acids Res., 2000, vol. 28, pp. 10–14.Google Scholar
  14. 14.
    Flavin, M. and Nerad, T.A., J. Eukar. Microbiol., 1993, vol. 40, pp. 172–179.Google Scholar
  15. 15.
    Kusakin, O.G. and Drozdov, A.L., Filema organicheskogo mira (Phylema of Organic World), St. Petersburg: Nauka, part 2, 1998.Google Scholar
  16. 16.
    V'yugin, V.V., Gorbunov, K.Yu., and Lyubetsky, V.A., Problems of Control and Modeling in Complex Systems, Proc. 2nd Int. Conf., Samara, 2000, pp. 130–137.Google Scholar
  17. 17.
    Hwang, V.W., Friedrich, M., Tautz, D., Park, C.J., Kim, W., Nature, 2000, vol. 413, pp. 154–157.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • V. V. V'yugin
    • 1
  • M. S. Gelfand
    • 2
  • V. A. Lyubetsky
    • 1
  1. 1.Institute for Problems of Information TransmissionRussian Academy of SciencesMoscowRussia
  2. 2.State Scientific Center GosNIIGenetikaMoscowRussia

Personalised recommendations