Journal of Protein Chemistry

, Volume 18, Issue 1, pp 127–136 | Cite as

Properties of Soluble Fusions Between Mammalian Aspartic Proteinases and Bacterial Maltose-Binding Protein

  • Deepali Sachdev
  • John M. Chirgwin


The mammalian aspartic proteinases procathepsin D and pepsinogen form insoluble inclusion bodies when expressed in bacteria. They become soluble but nonnative when synthesized as fusions to the carboxy terminus of E. coli maltose-binding protein (MBP). Since these nonnative states of the two aspartic proteinases showed no tendency to form insoluble aggregates, their biophysical properties were analyzed. The MBP portions were properly folded as shown by binding to amylose, but the aspartic proteinase moieties failed to bind pepstatin and lacked enzymatic activity, indicating that they were not correctly folded. When treated with proteinase K, only the MBP portion of the fusions was resistant to proteolysis. The fusion between MBP and cathepsin D had increased hydrophobic surface exposure compared to the two unfused partners, as determined by bis-ANS binding. Ultracentrifugal sedimentation analysis of MBP–procathepsin D and MBP–pepsinogen revealed species with very large and heterogeneous sedimentation values. Refolding of the fusions from 8 M urea generated proteins no larger than dimers. Refolded MBP–pepsinogen was proteolytically active, while only a few percent of renatured MBP–procathepsin D was obtained. The results suggest that MBP–aspartic proteinase fusions can provide a source of soluble but nonnative folding states of the mammalian polypeptides in the absence of aggregation.

Aspartic proteinases protein folding protein fusions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betton, J. M., and Hofnung, M. (1994). EMBO J. 13, 1226–1234.Google Scholar
  2. Betton, J. M., Martineau, P., Saurin, W., and Hofnung, M. (1993). FEBS Lett. 325, 34–38.Google Scholar
  3. Betts, S., Haase-Pettingell, C., and King, J. (1997). Adv. Protein Chem. 50, 243–264.Google Scholar
  4. Beyer, B. M., and Dunn, B. M. (1996). J. Biol. Chem. 271, 15590–15596.Google Scholar
  5. Bowden, G. A., Paredes, A. M., and Georgiou, G. (1991). Bio/Technology 9, 725–730.Google Scholar
  6. Brems, D. N., Plaisted, S. M., Kauffman, E. W., and Havel, H. A. (1986). Biochemistry 25, 6539–6543.Google Scholar
  7. Conner, G. E. (1989). Biochem. J. 263, 601–604.Google Scholar
  8. Conner, G. E., and Richo, G. (1992). Biochemistry 31, 1142–1147.Google Scholar
  9. Conner, G. E., and Udey, J. A. (1990). DNA Cell Biol. 9, 1–9.Google Scholar
  10. Cottrell, T. J., Harris, L. J., Tanaka, T., and Yada, R. Y. (1995). J. Biol. Chem. 270, 19974–19978.Google Scholar
  11. Delbruck, R., Desel, C., von Figura, K., and Hille-Rehfeld, A. (1994). Eur. J. Cell Biol. 64, 7–14.Google Scholar
  12. Fortenberry, S. C., Schorey, J. S., and Chirgwin, J. M. (1995). J. Cell Sci. 108, 2001–2006.Google Scholar
  13. Hasilik, A. (1992). Experientia 48, 130–151.Google Scholar
  14. Hasilik, A., and Neufeld, E. F. (1980). J. Biol. Chem. 255, 4937–4945.Google Scholar
  15. Helenius, A., Trombetta, E. S., Hebert, D. N., and Simons, J. F. (1997). Trends Cell Biol. 7, 193–200.Google Scholar
  16. Jaenicke, R. (1987). Prog. Biophys. Mol. Biol. 49, 117–237.Google Scholar
  17. Jaenicke, R. (1991). Biochemistry 30, 3147–3161.Google Scholar
  18. Jaenicke, R. (1995). Phil. Trans. R. Soc. Lond. B Biol. Sci. 348, 97–105.Google Scholar
  19. Jaenicke, R., and Seckler, R. (1997). Adv. Protein Chem. 50, 1–60.Google Scholar
  20. Koelsch, G., Metcalf, P., Vetvicka, V., and Fusek, M. (1995). Adv. Exp. Med. Biol. 362, 273–278.Google Scholar
  21. Kuhelj, R., Dolinar, M., Pungercar, J., and Turk, V. (1995). Eur. J. Biochem. 229, 533–539.Google Scholar
  22. Laemmli, U. K. (1970). Nature 227, 680–685.Google Scholar
  23. LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. (1993). Bio/Technology 11, 187–193.Google Scholar
  24. Lin, X. L., Wong, R. N., and Tang, J. (1989). J. Biol. Chem. 264, 4482–4489.Google Scholar
  25. Lin, X., Koelsch, G., Loy, J. A., and Tang, J. (1995). Protein Sci. 4, 159–166.Google Scholar
  26. Liu, G. P., Topping, T. B., Cover, W. H., and Randall, L. L. (1988). J. Biol. Chem. 263, 14790–14793.Google Scholar
  27. Liu, G., Topping, T. B., and Randall, L. L. (1989). Proc. Natl. Acad. Sci. USA 86, 9213–9217.Google Scholar
  28. London, J., Skrzynia, C., and Goldberg, M. E. (1974). Eur. J. Biochem. 47, 409–415.Google Scholar
  29. Marciniszyn, J., Jr., Hartsuck, J. A., and Tang, J. (1976). J. Biol. Chem. 251, 7088–7094.Google Scholar
  30. Netzer, W. J., and Hartl, F. U. (1997). Nature 388, 343–349.Google Scholar
  31. Nilsson, B., and Anderson, S. (1991). Annu. Rev. Microbiol. 45, 607–635.Google Scholar
  32. Sachdev, D., and Chirgwin, J. M. (1998a). Protein Express. Purif. 12, 122–132.Google Scholar
  33. Sachdev, D., and Chirgwin, J. M. (1998b). Biochem. Biophys. Res. Commun. 244, 933–937.Google Scholar
  34. Scarborough, P. E., and Dunn, B. M. (1994). Protein Eng. 7, 495–502.Google Scholar
  35. Schlunegger, M. P., Bennett, M. J., and Eisenberg, D. (1997). Adv. Protein Chem. 50, 61–122.Google Scholar
  36. Teschke, C. M., and King, J. (1995). Biochemistry 34, 6815–6826.Google Scholar
  37. van Holde, K. E., and Weischet, W. O. (1978). Biopolymers 17, 1397–1403.Google Scholar
  38. Wetzel, R. (1994). Trends Biotechnol. 12, 193–198.Google Scholar
  39. Zetina, C. R., and Goldberg, M. E. (1980). J. Mol. Biol. 137, 401–414.Google Scholar
  40. Zettlmeissl, G., Rudolph, R., and Jaenicke, R. (1979). Biochemistry 18, 5567–5571.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Deepali Sachdev
    • 1
  • John M. Chirgwin
    • 1
  1. 1.Audie L. Murphy Memorial Veterans Administration Hospital, and Departments of Biochemistry and MedicineUniversity of Texas Health Science Center at San AntonioTexas

Personalised recommendations