Biotechnology Letters

, Volume 24, Issue 20, pp 1699–1703 | Cite as

Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light:dark cycle

  • Jaime Fábregas
  • Ana Maseda
  • Adolfo Domínguez
  • Martinha Ferreira
  • Ana Otero
Article

Abstract

Nannochloropsis gaditana was grown in semicontinuous culture with a circadian light:dark cycle in a flat-panel photobioreactor. The microalga had a maximal protein content (3 pg cell−1) after 6 h light and then only storage compounds were accumulated that were consumed during the dark phase. Carbohydrates reached their maximum value after 8 h (0.8 pg cell−1) and lipids after 12 h light (2.5 pg cell−1). The results demonstrated that young or adult microalgae might be obtained according to the time of day.

biochemical composition light:dark cycle Nannochloropsis photobioreactor semicontinuous culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chisholm SW, Stross RG (1976) Phosphate uptake kinetics in Euglena gracilis (Z) (Euglenophyceae) grown on light/dark cycles. I. Synchronized batch cultures. J. Phycol. 12: 210-217.Google Scholar
  2. Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ (1999) An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11: 179-184.Google Scholar
  3. Fábregas J, Abalde J, Herrero C, Cabezas B, VeigaM(1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrients concentration. Aquaculture 42: 207-215.Google Scholar
  4. Falkowski PG (1980) Light shade adaptation in microalgae. In: Falkowski PG, ed. Primary Productivity in the Sea. New York: Plenum Press, pp. 99-119.Google Scholar
  5. Gnaiger E, Bitterlich G (1984) Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62: 289-298.Google Scholar
  6. Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215.Google Scholar
  7. Kochert G (1978) Carbohydrate determination by the phenolsulphuric acid method. In: Hellebust JA, Craigie JS, eds. Handbook of Phycological Methods. Physiological and Biochemical Methods. London: Cambridge University Press, pp. 95-97.Google Scholar
  8. Kraay GW, Zapata M, Veldhuis MJW (1992) Separation of chlorophylls c1, c2 and c3 of marine phytoplankton by reversed-phase-C18-high-performance liquid chromatography. J. Phycol. 28: 708-712.Google Scholar
  9. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J. Lipid. Res. 7: 574-576.Google Scholar
  10. Paasche E (1967) Marine plankton algae grown with light-dark Cycles. I. Coccolithus huxleyi. Physiol. Plant. 20: 946-956.Google Scholar
  11. Paasche E (1968) Marine plankton algae grown with light-dark cycles. II. Ditylum brightwellii and Nitzschia turgidula. Physiol. Plant. 21: 66-77.Google Scholar
  12. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157-191.Google Scholar
  13. Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J. Phycol. 26: 463-469.Google Scholar
  14. Vaulot D, Chisholm SW (1987) A simple model of the growth of phytoplankton populations in light/ dark cycles. J. Plankton Res. 9: 345-366.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jaime Fábregas
    • 1
  • Ana Maseda
    • 1
  • Adolfo Domínguez
    • 1
  • Martinha Ferreira
    • 1
  • Ana Otero
    • 1
  1. 1.Laboratorio de Microbiología, Facultad de FarmaciaUniversidad de SantiagoSantiagoSpain

Personalised recommendations